
Polyspace® Bug Finder™ Server™
User’s Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Server™ User's Guide
© COPYRIGHT 2019-2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 3.0 (R2019a)
September 2019 Online Only Revised for Version 3.1 (Release 2019b)
March 2020 Online Only Revised for Version 3.2 (Release 2020a)
September 2020 Online Only Revised for Version 3.3 (Release 2020b)
March 2021 Online Only Revised for Version 3.4 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Polyspace Analysis on Server After Code Submission
1

Prepare Scripts for Polyspace Analysis . 1-2
Options Related to Source Code and Target . 1-2
Options Related to Polyspace Analysis . 1-4

Options Files for Polyspace Analysis . 1-6
What are Options Files . 1-6
Specifying Options Files . 1-6
Specifying Multiple Options Files . 1-8

Offload Polyspace Analysis from Continuous Integration Server to
Another Server . 1-9

Install Products . 1-9
Configure and Start Job Scheduler Services on Head Node and Worker

Node . 1-11
Offload Analysis from Client Node . 1-12

Configure Polyspace Analysis Options in User Interface and Generate
Scripts . 1-14

Prerequisites . 1-15
Generate Scripts from Configuration . 1-15
Run Analysis with Generated Scripts . 1-16

Sample Scripts for Polyspace Analysis with Jenkins 1-18
Extending Sample Scripts to Your Development Process 1-18
Prerequisites . 1-19
Set Up Polyspace Plugin in Jenkins . 1-20
Script to Run Bug Finder, Upload Results and Send Common Notification

. 1-24
Script to Run Bug Finder, Upload Results and Send Personalized
Notification . 1-25

Sample Jenkins Pipeline Scripts for Polyspace Analysis 1-32
Prerequisites . 1-32
Run Polyspace Analysis in Stages in a Pipeline Script 1-32

Run Polyspace Analysis on Generated Code by Using Packaged Options
Files . 1-34

Generate and Package Polyspace Options Files . 1-34
Run Polyspace Analysis by Using the Packaged Options Files 1-35

Analyze Code Generated as Standalone Code in a Distributed Workflow
. 1-37

Open Model . 1-37
Configure Model . 1-38

iii

Contents

Generate Code Archive . 1-39
Generate and Package Polyspace Options File . 1-39
Run Polyspace Analysis by Using the Packaged Options Files 1-39

Use Existing Software Development Specifications for
Polyspace Analysis

2
Create Polyspace Analysis Configuration from Build Command 2-2

polyspace-configure Source Files Selection Syntax 2-4

Modularize Polyspace Analysis by Using Build Command 2-6
Build Source Code . 2-6
Create One Polyspace Options File for Full Build 2-8
Create Options File for Specific Binary in Build Command 2-9
Create One Options File Per Binary Created in Build Command 2-9

Offload Polyspace Analysis to Remote Servers from Desktop
3

Send Polyspace Analysis from Desktop to Remote Servers 3-2
Client-Server Workflow for Running Analysis . 3-2
Prerequisites . 3-3
Offload Analysis in Polyspace User Interface . 3-3

Send Polyspace Analysis from Desktop to Remote Servers Using Scripts
. 3-6

Client-Server Workflow for Running Analysis . 3-6
Prerequisites . 3-7
Run Remote Analysis . 3-7
Manage Remote Analysis . 3-8
Sample Scripts for Remote Analysis . 3-10

Run Polyspace Analysis on Server with MATLAB Scripts
4

Integrate Polyspace Server Products with MATLAB 4-2
Integrate Polyspace Server Products with MATLAB 4-2
Check Integration Between MATLAB and Polyspace 4-3
Run Polyspace Server Products with MATLAB Scripts 4-3

iv Contents

Configure Target and Compiler Options
5

Specify Target Environment and Compiler Behavior 5-2
Extract Options from Build Command . 5-2
Specify Options Explicitly . 5-3

C/C++ Language Standard Used in Polyspace Analysis 5-5
Supported Language Standards . 5-5
Default Language Standard . 5-5

C11 Language Elements Supported in Polyspace . 5-7

C++11 Language Elements Supported in Polyspace 5-9

C++14 Language Elements Supported in Polyspace 5-12

C++17 Language Elements Supported in Polyspace 5-15

Provide Standard Library Headers for Polyspace Analysis 5-19

Requirements for Project Creation from Build Systems 5-20
Compiler Requirements . 5-20
Build Command Requirements . 5-21

Supported Keil or IAR Language Extensions . 5-23
Special Function Register Data Type . 5-23
Keywords Removed During Preprocessing . 5-24

Remove or Replace Keywords Before Compilation 5-25
Remove Unrecognized Keywords . 5-25
Remove Unrecognized Function Attributes . 5-27

Gather Compilation Options Efficiently . 5-28

Configure Inputs and Stubbing Options
6

Specify External Constraints . 6-2
Create Constraint Template . 6-2
Create Constraint Template from Code Prover Analysis Results 6-4
Update Existing Template . 6-4
Specify Constraints in Code . 6-5

External Constraints for Polyspace Analysis . 6-7
Constraint Specification Limitations . 6-11

Constrain Global Variable Range . 6-13
User Interface (Desktop Products Only) . 6-13
Command Line . 6-14

v

Constrain Function Inputs . 6-16
User Interface (Desktop Products Only) . 6-16
Command Line . 6-17

XML File Format for Constraints . 6-19
Syntax Description — XML Elements . 6-19
Valid Modes and Default Values . 6-23

Configure Multitasking Analysis
7

Analyze Multitasking Programs in Polyspace . 7-2
Configure Analysis . 7-2
Review Analysis Results . 7-3

Auto-Detection of Thread Creation and Critical Section in Polyspace . . . 7-5
Multitasking Routines that Polyspace Can Detect 7-5
Example of Automatic Thread Detection . 7-7
Naming Convention for Automatically Detected Threads 7-10
Limitations of Automatic Thread Detection . 7-11

Configuring Polyspace Multitasking Analysis Manually 7-16
Specify Options for Multitasking Analysis . 7-16
Adapt Code for Code Prover Multitasking Analysis 7-16

Protections for Shared Variables in Multitasking Code 7-20
Detect Unprotected Access . 7-20
Protect Using Critical Sections . 7-21
Protect Using Temporally Exclusive Tasks . 7-22
Protect Using Priorities . 7-22
Protect By Disabling Interrupts . 7-23

Define Atomic Operations in Multitasking Code . 7-24
Nonatomic Operations . 7-24
What Polyspace Considers as Nonatomic . 7-24
Define Specific Operations as Atomic . 7-25

Define Preemptable Interrupts and Nonpreemptable Tasks 7-27
Emulating Task Priorities . 7-27
Examples of Task Priorities . 7-27
Further Explorations . 7-28

Define Critical Sections with Functions That Take Arguments 7-30
Polyspace Assumption on Functions Defining Critical Sections 7-30
Adapt Polyspace Analysis to Lock and Unlock Functions with Arguments

. 7-30

vi Contents

Configure Coding Rules Checking and Code Metrics
Computation

8
Check for Coding Standard Violations . 8-2

Configure Coding Rules Checking . 8-2
Review Coding Rule Violations . 8-6
Generate Reports . 8-8

Avoid Violations of MISRA C:2012 Rules 8.x . 8-9

Reduce Software Complexity by Using Polyspace Checkers 8-12
Configure Thresholds for Software Complexity Checkers 8-12
Identify and Reduce Software Complexity . 8-13

Software Quality Objective Subsets (C:2004) . 8-16
Rules in SQO-Subset1 . 8-16
Rules in SQO-Subset2 . 8-17

Software Quality Objective Subsets (AC AGC) . 8-20
Rules in SQO-Subset1 . 8-20
Rules in SQO-Subset2 . 8-20

Software Quality Objective Subsets (C:2012) . 8-23
Guidelines in SQO-Subset1 . 8-23
Guidelines in SQO-Subset2 . 8-24

Software Quality Objective Subsets (C++) . 8-26
SQO Subset 1 – Direct Impact on Selectivity . 8-26
SQO Subset 2 – Indirect Impact on Selectivity . 8-27

Coding Rule Subsets Checked Early in Analysis . 8-32
MISRA C:2004 and MISRA AC AGC Rules . 8-32
MISRA C:2012 Rules . 8-39

Create Custom Coding Rules . 8-47
User Interface (Desktop Products Only) . 8-47
Command Line . 8-48

Compute Code Complexity Metrics . 8-49
Impose Limits on Metrics (Desktop Products Only) 8-49
Impose Limits on Metrics (Server and Access products) 8-51

HIS Code Complexity Metrics . 8-52
Project . 8-52
File . 8-52
Function . 8-52

vii

Configure Bug Finder Checkers
9

Choose Specific Bug Finder Defect Checkers . 9-2
User Interface (Desktop Products Only) . 9-2
Command Line . 9-2

Modify Default Behavior of Bug Finder Checkers 9-4
Defect Checkers . 9-4
Coding Standard Checkers . 9-6

Flag Deprecated or Unsafe Functions Using Bug Finder Checkers 9-9
Identify Need for Extending Checker . 9-9
Extend Checker . 9-10
Checkers That Can Be Extended . 9-10

Extend Bug Finder Checkers for Standard Library Functions to Custom
Libraries . 9-11

Identify Need for Extending Checker . 9-11
Extend Checker . 9-11
Checkers That Can Be Extended . 9-12

Extend Bug Finder Checkers to Find Defects from Specific System Input
Values . 9-13

Identify Need for Extending Checker . 9-13
Extend Checker . 9-13
Checkers That Can Be Extended . 9-15

Extend Concurrency Defect Checkers to Unsupported Multithreading
Environments . 9-16

Identify Need for Extending Checker . 9-16
Extend Checker . 9-17
Checkers That Can Be Extended . 9-17

Extend Checkers for Initialization to Check Function Arguments Passed
by Pointers . 9-19

Identify Need for Existing Checker . 9-19
Extend Checker . 9-19
Checkers That Can Be Extended . 9-20

Prepare Checkers Configuration for Polyspace Bug Finder Analysis . . . 9-21
Identify Checkers to Enable . 9-21
Create Checkers Configuration Files . 9-21

Short Names of Bug Finder Defect Checkers . 9-26

Bug Finder Defect Groups . 9-40
C++ Exceptions . 9-40
Concurrency . 9-40
Cryptography . 9-41
Data flow . 9-41
Dynamic Memory . 9-42
Good Practice . 9-42
Numerical . 9-42

viii Contents

Object Oriented . 9-42
Performance . 9-43
Programming . 9-43
Resource Management . 9-43
Static Memory . 9-43
Security . 9-44
Tainted data . 9-44

Sources of Tainting in a Polyspace Analysis . 9-45
Sources of Tainted Data . 9-45
Impact of Tainted Data Defects . 9-45

Polyspace Bug Finder Defects Checkers Enabled by Default 9-48

Bug Finder Results Found in Fast Analysis Mode 9-53
Polyspace Bug Finder Defects . 9-53
MISRA C:2004 and MISRA AC AGC Rules . 9-56
MISRA C:2012 Rules . 9-62
MISRA C++ 2008 Rules . 9-68

CWE Coding Standard and Polyspace Results . 9-78
CWE and Polyspace Bug Finder . 9-78
Find CWE IDs from Polyspace Results . 9-78
Mapping Between CWE Identifiers and Polyspace Results 9-78

Mapping Between CWE-658 or 659 and Polyspace Results 9-103
CWE-658: Weaknesses in Software Written in C 9-103
CWE-659: Weaknesses in Software Written in C++ 9-109

Configure Comment Import from Previous Results
10

Import Review Information from Previous Polyspace Analysis 10-2
Automatic Import from Last Analysis . 10-2
Import from Another Analysis Result . 10-2
Import Algorithm . 10-3
View Imported Review Information That Does Not Apply 10-4

Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results
. 10-6

Mapping Multiple MISRA C: 2004 Annotations to the Same MISRA C: 2012
Result . 10-7

Troubleshooting in Polyspace Bug Finder Server
11

License Error –4,0 . 11-2
Issue . 11-2
Possible Cause: Another Polyspace Instance Running 11-2

ix

Possible Cause: Prior Polyspace Run in Simulink or MATLAB Coder 11-2

Read Error Information When Polyspace Analysis Stops 11-3

Contact Technical Support About Issues with Running Polyspace 11-4
Provide System Information . 11-4
Provide Information About the Issue . 11-4

Compiler Not Supported for Project Creation from Build Systems 11-7
Issue . 11-7
Cause . 11-7
Solution . 11-7

Slow Build Process When Polyspace Traces the Build 11-13
Issue . 11-13
Cause . 11-13
Solution . 11-13

Check if Polyspace Supports Build Scripts . 11-14
Issue . 11-14
Possible Cause . 11-14
Solution . 11-14

Troubleshooting Project Creation from MinGW Build 11-16
Issue . 11-16
Cause . 11-16
Solution . 11-16

Troubleshooting Project Creation from Visual Studio Build 11-17

Polyspace Cannot Find the Server . 11-18
Message . 11-18
Possible Cause . 11-18
Solution . 11-18

Job Manager Cannot Write to Database . 11-19
Message . 11-19
Possible Cause . 11-19
Workaround . 11-19

Undefined Identifier Error . 11-20
Issue . 11-20
Possible Cause: Missing Files . 11-20
Possible Cause: Unrecognized Keyword . 11-20
Possible Cause: Declaration Embedded in #ifdef Statements 11-21
Possible Cause: Project Created from Non-Debug Build 11-21

Unknown Function Prototype Error . 11-23
Issue . 11-23
Cause . 11-23
Solution . 11-23

Error Related to #error Directive . 11-24
Issue . 11-24
Cause . 11-24

x Contents

Solution . 11-24

Large Object Error . 11-25
Issue . 11-25
Cause . 11-25
Solution . 11-25

Errors Related to Generic Compiler . 11-27
Issue . 11-27
Cause . 11-27
Solution . 11-27

Errors Related to Keil or IAR Compiler . 11-28
Missing Identifiers . 11-28

Errors Related to Diab Compiler . 11-29
Issue . 11-29
Cause . 11-29
Solution . 11-29

Errors Related to Green Hills Compiler . 11-31
Issue . 11-31
Cause . 11-31
Solution . 11-31

Errors Related to TASKING Compiler . 11-33
Issue . 11-33
Cause . 11-33
Solution . 11-33

Errors from Conflicts with Polyspace Header Files 11-35
Issue . 11-35
Cause . 11-35
Solution . 11-35

Errors from Using Namespace std Without Prefix 11-36
Issue . 11-36
Cause . 11-36
Solution . 11-36

Errors from Assertion or Memory Allocation Functions 11-37
Issue . 11-37
Cause . 11-37
Solution . 11-37

Errors from In-Class Initialization (C++) . 11-38

Errors from Double Declarations of Standard Template Library Functions
(C++) . 11-39

Errors Related to GNU Compiler . 11-40
Issue . 11-40
Cause . 11-40
Solution . 11-40

xi

Errors Related to Visual Compilers . 11-41
Import Folder . 11-41
pragma Pack . 11-41
C++/CLI . 11-42

Error or Slow Runs from Disk Defragmentation and Anti-virus Software
. 11-43

Issue . 11-43
Possible Cause . 11-43
Solution . 11-43

SQLite I/O Error . 11-45
Issue . 11-45
Cause . 11-45
Solution . 11-45

Resolve -xml-annotations-description Errors . 11-46
Issue . 11-46
Possible Solutions . 11-46

xii Contents

Polyspace Analysis on Server After Code
Submission

1

Prepare Scripts for Polyspace Analysis
When you run Polyspace as part of your software development processes, your analysis scripts must
be preconfigured for new code submissions. For instance, new source files must be automatically
included in the Polyspace analysis. To keep the analysis configuration updated with new submissions,
you can leverage existing artifacts such as your build command (makefiles) and create your analysis
configuration on the fly when new submissions occur.

The analysis configuration consists of two parts:

• Options related to the source code and target, such as data type sizes, macro definitions, cyclic
tasks and interrupts, and so on.

• Options related to the analysis, such as checkers, code verification assumptions, and so on.

Options Related to Source Code and Target
The most common options related to the source code and target are:

• -sources-list-file: Specify a text file containing one source file per line.
• -I: Specify the folders containing included header files.
• Compiler (-compiler): Specify the compiler used for building your source code.
• Target processor type (-target): Specify sizes of data types and endianness by selecting a
predefined target processor.

1 Polyspace Analysis on Server After Code Submission

1-2

• Preprocessor definitions (-D): Replace unrecognized code for the purposes of Polyspace
analysis. You typically use this option if the analysis shows compilation errors from compiler-
specific keywords and macros.

• Constraint setup (-data-range-specifications): Define external constraints on global
variables and function interfaces. The option is typically useful for a more precise Code Prover
analysis.

For the full list of options, see:

• “Analysis Options in Polyspace Bug Finder Server”
• “Analysis Options in Polyspace Code Prover Server” (Polyspace Code Prover Server)

Extract Options from Build Command

In a continuous integration workflow, you typically do not specify the option arguments explicitly.
Your build command contains the specifications for sources, compiler, macro definitions and so on.
Run the polyspace-configure command to extract these specifications from your build command
and create an options file. For instance, if you use make to build your source code, run the analysis as
follows:

polyspace-configure -output-options-file polyspace_opts make
polyspace-bug-finder-server -options-file polyspace_opts
polyspace-code-prover-server -options-file polyspace_opts

The first command extracts source and target specifications by executing the instructions in the
makefile and creates an analysis options file. The second and third commands runs a Bug Finder and
Code Prover analysis with the options file. See “Create Polyspace Analysis Configuration from Build
Command” on page 2-2.

Specify Options Explicitly in Options File

If you cannot extract the options from your build command, specify the options explicitly. You can
create some of the option arguments on the fly from new submissions. For instance, the argument for
the option -sources-list-file is a text file that lists the sources. You can update this text file
based on any new source file added to the source code repository.

If you have to specify the target and compiler options explicitly, you might not get all the options right
in the first run. To find the right combination of options:

1 Specify the options Compiler (-compiler) and Target processor type (-target) in
your options file.

2 Compile the code with your compiler and fix all compilation errors. Then, run only the
compilation part of the Polyspace analysis.

• In Bug Finder, disable all checkers. Specify -checkers none in the options file. See Find
defects (-checkers).

• In Code Prover, stop the analysis after compilation. Specify -to compile in the options file.
See Verification level (-to).

If you run into compilation errors, you might have to work around the errors with Polyspace
options. For instance, if you see a compilation error because the macro _WIN32 is defined with a

 Prepare Scripts for Polyspace Analysis

1-3

compiler option but Polyspace considers the macro as undefined by default, emulate your
compiler option with the Polyspace option -D _WIN32. See “Target and Compiler”, “Macros” and
“Environment Settings” for the target and compiler options.

Once you fix all compilation errors with Polyspace analysis options, your options file is prepared with
the right set of Polyspace options for the analysis.

If you have an installation of the desktop products, Polyspace Bug Finder and/or Polyspace Code
Prover™, you can perform the trial runs in the user interface of the desktop products. You can then
generate an options file from the configuration defined in the user interface. The user interface
provides various features such as:

• Compilation assistant that suggests workarounds for some compilation errors,
• Auto-generation of XML file for constraint specification,
• Context-sensitive help for options,

See “Configure Polyspace Analysis Options in User Interface and Generate Scripts” on page 1-14.

Options Related to Polyspace Analysis
Some options related to the Polyspace analysis are:

Bug Finder

• Find defects (-checkers): Specify checkers to enable for the Bug Finder analysis.
• Check MISRA C:2012 (-misra3) and other options related to external standards: Specify an

external standard and a predefined subset of that standard.
• Set checkers by file (-checkers-selection-file): Specify a custom subset of rules

from external standards.
• Bug Finder and Code Prover report (-report-template): Specify that a PDF, Word or

HTML report must be generated along with the analysis results and specify a template for the
report.

• Run Bug Finder or Code Prover analysis on a remote cluster (-batch): Offload
the analysis to another server. See “Offload Polyspace Analysis from Continuous Integration
Server to Another Server” on page 1-9.

Code Prover

• Overflow mode for signed integer (-signed-integer-overflows): Specify the
behavior following an overflow: stop analysis or continue with wrap-around.

• Detect stack pointer dereference outside scope (-detect-pointer-escape):
Specify if the analysis must find cases where a function returns a pointer to one of its local
variables.

• Detect uncalled functions (-uncalled-function-checks): Specify if the analysis must
flag functions that are not called directly or indirectly from main or another entry point function.

• Bug Finder and Code Prover report (-report-template): Specify that a PDF, Word or
HTML report must be generated along with the analysis results and specify a template for the
report.

1 Polyspace Analysis on Server After Code Submission

1-4

• Run Bug Finder or Code Prover analysis on a remote cluster (-batch): Offload
the analysis to another server. See “Offload Polyspace Analysis from Continuous Integration
Server to Another Server” (Polyspace Code Prover Server).

The checkers and other options related to the Polyspace analysis can be applicable to more than one
project. To maintain uniform standards across projects, you can reuse this subset of analysis options.
When running the analysis, specify two options files, one containing the options specific to the
current project and the other containing the reusable options. You can extract the first options file
from your build command but explicitly create the second options file.

For instance, in this example, the polyspace-bug-finder-server command uses two options
files: compile_opts generated from a makefile and runbf_opts created manually. All reusable
options can be specified in runbf_opts.

polyspace-configure -output-options-file compile_opts make
polyspace-bug-finder-server -options-file compile_opts -options-file runbf_opts
polyspace-code-prover-server -options-file compile_opts -options-file runcp_opts

If the same option appears in two options files, the last instance of the option is considered. In the
preceding example, if an option occurs in both compile_opts and runbf_opts, the occurrence in
runbf_opts is considered. If you want to override previous occurrences of an option, use an
additional options file with your overrides. Append this options file to the end of the analysis
command.

See Also
polyspace-bug-finder-server | polyspace-configure

More About
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
• “Create Polyspace Analysis Configuration from Build Command” on page 2-2
• “Configure Polyspace Analysis Options in User Interface and Generate Scripts” on page 1-14

 Prepare Scripts for Polyspace Analysis

1-5

Options Files for Polyspace Analysis
To adapt the Polyspace analysis configuration to your development environment and requirements,
you have to modify the default configuration through command-line options such as -compiler.
Options files are a convenient way to collect multiple options together and reuse them across
projects.

What are Options Files
Options files are text files with one option per line. For instance, the content of an options file can
look like this:

Options for Polyspace analysis
Options apply to all projects in Controller module
-compiler visual16.x
-D _WIN32
-code-behavior-specifications "Z:\utils\polyspace\forbiddenfunctions.xml"

The lines starting with # represent comments for better readability. These lines are ignored during
analysis.

Specifying Options Files
Depending on the platform where you run analysis, you can specify an options file in one of the
following ways.

Command Line

At the command line (and in scripts), specify an options file as argument to the option -options-
file.

For instance, instead of the command:

polyspace-bug-finder -sources file.c -compiler visual16.x -D _WIN32
 -code-behavior-specifications "Z:\utils\polyspace\forbiddenfunctions.xml"

Save this content:

-compiler visual16.x
-D _WIN32
-code-behavior-specifications "Z:\utils\polyspace\forbiddenfunctions.xml"

In a file options.txt in the path Z:\utils\polyspace\ and shorten the command to:

polyspace-bug-finder -sources file.c -options-file "Z:\utils\polyspace\options.txt"

You can use options files with these Polyspace commands:

• polyspace-bug-finder

1 Polyspace Analysis on Server After Code Submission

1-6

• polyspace-bug-finder-server
• polyspace-bug-finder-access
• polyspace-code-prover
• polyspace-code-prover-server

IDEs

If you run Polyspace as You Code using IDE extensions, you typically specify three groups of options
differently:

• Build options:

You can extract build options from existing artifacts such as build commands and JSON
compilation database, or collect all build options in an options file. You can specify this options file
in the appropriate extension setting:

• Visual Studio Code: Analysis Options > Manual Setup > Build Setting : Polyspace Build
Options File

• Visual Studio: Get from Polyspace build options file (in section Build Configuration)
• Eclipse: Get from Polyspace build options file (in section Build Configuration)

• Checkers:

You can specify checkers using a checkers selection wizard. For details, see “Setting Checkers in
Polyspace as You Code” (Polyspace Bug Finder Access).

• Other remaining options:

All remaining options can be collected in a second options file that goes into the appropriate
extension setting:

• Visual Studio Code: Analysis Options > Manual Setup: Other Analysis Options
• Visual Studio: Analysis configuration > Analysis options file
• Eclipse: Analysis options file

If you use options files both for build options and other options, the result is the same as specifying a
single options file with the other options appended to the build options. See also “Specifying Multiple
Options Files” on page 1-8.

For more information on IDE extensions, see:

• “Configure Polyspace as You Code Extension in Visual Studio” (Polyspace Bug Finder Access)
• “Configure Polyspace as You Code Extension in Visual Studio Code” (Polyspace Bug Finder Access)
• “Configure Polyspace as You Code Plugin in Eclipse” (Polyspace Bug Finder Access)

Polyspace User Interface

In the user interface of the Polyspace desktop products, you typically do not require an options file.
Most options can be specified on the Configuration pane in the Polyspace user interface.

 Options Files for Polyspace Analysis

1-7

However, some options are available only at the command line and do not have a counterpart in the
user interface. If you have to specify multiple command-line-only options, you can collect them in an
options file, for instance commandLineStyleOptions.txt. On the Configuration pane, under the
Advanced Settings node, you can enter the following in the Other field:

-options-file commandLineStyleOptions.txt

Specifying Multiple Options Files
You can specify multiple options files in an analysis. For instance, at the command line, you can enter:

polyspace-bug-finder -sources file.c -options-file opts1.txt -options-file opts2.txt

When you specify multiple options files in an analysis, all options from the options files are appended
to the analysis command. For instance, the preceding command has the same effect as using a single
options file that places the content of opts1.txt above opts2.txt.

If an option appears in multiple files with conflicting arguments, the argument in the last options file
prevails. For instance, in the preceding command, if opts1.txt contains:

-checkers all
-misra3 all

And opts2.txt contains:

-misra3 single-unit-rules

The analysis uses only the argument single-unit-rules for the option -misra3.

You can use this stacking of options files to override options. For instance, suppose you use a read-
only options file that applies to your entire team but want to override some of the options in the file.
You can override the options by using a second options file that you create and specifying your
options file after the team-wide options file.

You can also specify the option -options-file within an options file and aggregate several options
files in this way.

See Also
-options-file

Related Examples
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
• “Prepare Scripts for Polyspace Analysis” on page 1-2
• “Analysis Options in Polyspace Bug Finder Server”

1 Polyspace Analysis on Server After Code Submission

1-8

Offload Polyspace Analysis from Continuous Integration Server
to Another Server

When running static code analysis with Polyspace as part of continuous integration, you might want
the analysis to run on a server that is different from the server running your continuous integration
(CI) scripts. For instance:

• You might want to perform the analysis on a server that has more processing power. You can
offload the analysis from your CI server to the other server.

• You might want to submit analysis jobs from several CI servers to a dedicated analysis server, hold
the jobs in queue, and execute them as Polyspace Server instances become available.

When you offload an analysis, the compilation phase of the analysis runs on the CI server. After
compilation, the analysis job is submitted to the other server and continues on this server. On
completion, the analysis results are downloaded back to the CI server. You can then upload the
results to Polyspace Access for review, or report the results in some other format.

Install Products
A typical distributed network for offloading an analysis consists of these parts:

 Offload Polyspace Analysis from Continuous Integration Server to Another Server

1-9

• Client node(s): Each CI server acts as a client node that submits Polyspace analysis jobs to a
cluster.

The cluster consists of a head node and one or more worker nodes. In this example, we use the
same computer as the head node and one worker node.

• Head node: The head node distributes the submitted jobs to worker nodes.
• Worker node(s): Each worker node executes one Polyspace analysis at a time.

Install these products:

• Client nodes: Polyspace Bug Finder Server or Polyspace Code Prover Server to submit jobs from
the Continuous Integration server.

• Head node: MATLAB® Parallel Server™ to manage submissions from multiple clients. An analysis
job is created for each submission and placed in a queue. As soon as a worker node is available,
the next analysis job from the queue is run on the worker.

• Worker node(s): MATLAB Parallel Server and Polyspace Bug Finder Server or Polyspace Code
Prover Server on the worker nodes to run a Bug Finder or Code Prover analysis.

1 Polyspace Analysis on Server After Code Submission

1-10

In the simplest configuration, where the same computer serves as the head node and one worker
node, you install MATLAB Parallel Server and one or both Polyspace Bug Finder Server and Polyspace
Code Prover Server on this computer. This example describes the simple configuration but you can
generalize the steps to multiple workers on separate computers.

Configure and Start Job Scheduler Services on Head Node and Worker
Node
Start a job scheduler service (the MATLAB Job Scheduler or mjs service) on the computer that acts
as the head node and worker node. Before starting the service, you must perform an initial setup.

Specify Polyspace Installation Paths

MATLAB Parallel Server and Polyspace Server products are installed in two separate folders. The
MATLAB Parallel Server installation routes the Polyspace analysis to the Polyspace Server products.
To link the two installations, specify the path to the root folder of the Polyspace Server products in
your MATLAB Parallel Server installation.

1 Navigate to matlabroot\toolbox\parallel\bin\. Here, matlabroot is the MATLAB
Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2021a.

2 Uncomment and modify the following line in the file mjs_polyspace.conf. To edit and save the
file, open your editor in administrator mode.

POLYSPACE_SERVER_ROOT=polyspaceserverroot

Here, polyspaceserverroot is the installation path of the server products, for instance:

C:\Program Files\Polyspace Server\R2021a

The Polyspace Server product offloading the analysis must belong to the same release as the
Polyspace Server product running the analysis. If you offload an analysis from an R2021a Polyspace
Server product, the analysis must run using another R2021a Polyspace Server product.

Configure mjs Service Settings

Before starting MATLAB Parallel Server (the mjs service), you must perform a minimum
configuration.

1 Navigate to matlabroot\toolbox\parallel\bin, where matlabroot is the MATLAB
Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2021a.

2 Modify the file mjs_def.bat (Windows®) or mjs_def.sh (Linux®). To edit and save the file,
open your editor in administrator mode.

Read the instructions in the file and uncomment the lines as needed. At a minimum, uncomment
these lines that specify:

• Host name.

Windows:

 Offload Polyspace Analysis from Continuous Integration Server to Another Server

1-11

REM set HOSTNAME=%strHostname%.%strDomain%

Linux:

#HOSTNAME=`hostname -f`

Explicitly specify your computer host name.
• Security level.

Windows:

REM set SECURITY_LEVEL=

Linux:

#SECURITY_LEVEL=""

Explicitly specify a security level to avoid future errors when starting the job scheduler.

For security levels 2 and higher, you have to provide a password in a graphical window at the
time of job submission.

Start mjs Service and One Worker

In a command-line terminal, cd to matlabroot\toolbox\parallel\bin, where matlabroot is
the MATLAB Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2021a.
Run these commands (directly at the command line or by using scripts):

mjs install
mjs start
startjobmanager -name JobScheduler -remotehost hostname -v
startworker -jobmanagerhost hostname -jobmanager JobScheduler
 -remotehost hostname -v

Here, hostname is the host name of your computer. This name is the host name that you specified in
the file mjs_def.bat (Windows) or mjs_def.sh (Linux).

For more details and configuring services with multiple workers, see:

• “Install and Configure MATLAB Parallel Server for MATLAB Job Scheduler and Network License
Manager” (MATLAB Parallel Server)

• mjs

Offload Analysis from Client Node
Once you have set up the computer that acts as the head node and worker node, you are ready to
offload a Polyspace analysis from the client node (the CI server running scripts on Jenkins on another
CI system).

To offload an analysis, enter:

1 Polyspace Analysis on Server After Code Submission

1-12

polyspaceserverroot\polyspace\bin\polyspace-bug-finder-server
 -batch -scheduler hostname|MJSName@hostname [options] [-mjs-username name]

where:

• polyspaceserverroot is the installation folder of Polyspace Server products on the client node,
for instance, C:\Program Files\Polyspace Server\R2021a.

• hostname is the host name of the computer that hosts the head node of the MATLAB Parallel
Server cluster.

MJSName is the name of the MATLAB Job Scheduler on the head node host.

If you use the startjobmanager command to start the MATLAB Job Scheduler, MJSName is the
argument of the option -name.

• options are the Polyspace analysis options. These options are the same as that of a local
analysis. For instance, you can use these options:

• -sources-list-file: Specify a text file that has one source file name per line.
• -options-file: Specify a text file that has one option per line.
• -results-dir: Specify a download folder for storing results after analysis.

For the full list of options, see “Analysis Options in Polyspace Bug Finder Server”.
• name is the user name required for job submissions using MATLAB Parallel Server. This credential

is required only if you use a security level of 1 or higher for MATLAB Parallel Server submissions.
See “Set MATLAB Job Scheduler Cluster Security” (MATLAB Parallel Server).

For security levels 2 and higher, you have to provide a password in a graphical window at the time of
job submission. To avoid this prompt in the future, you can specify that the password be remembered
on the computer.

The analysis executes locally on the CI server up to the end of the compilation phase. After
compilation, the analysis job is submitted to the other server. On completion, the analysis results are
downloaded back to the CI server. You can then upload the results to Polyspace Access for review, or
report the results in some other format.

See Also
polyspace-access

More About
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

 Offload Polyspace Analysis from Continuous Integration Server to Another Server

1-13

Configure Polyspace Analysis Options in User Interface and
Generate Scripts

In this section...
“Prerequisites” on page 1-15
“Generate Scripts from Configuration” on page 1-15
“Run Analysis with Generated Scripts” on page 1-16

If you have an installation of the desktop products, Polyspace Bug Finder and/or Polyspace Code
Prover, you can configure your project in the user interface of the desktop products. You can then
generate a script or an options file from the configuration defined in the user interface and use the
script or options file for automated runs with the desktop or server products.

Unless you create a Polyspace project from existing specifications such as a build command, when
setting up the project, you might have to perform a few trial runs first. In these trial runs, if you run
into compilation errors or unchecked code, you might have to modify your analysis configuration. It is
easier performing this initial setup in the user interface of the desktop products. The user interface
provides various features such as:

1 Polyspace Analysis on Server After Code Submission

1-14

• Compilation assistant that suggests workarounds for some compilation errors,
• Auto-generation of XML file for constraint specification,
• Context-sensitive help for options.

Prerequisites
You must have at least one license of Polyspace Bug Finder and/or Polyspace Code Prover to open the
Polyspace user interface and configure the options.

After generating the scripts, you can run the analysis using either the desktop products (Polyspace
Bug Finder and Polyspace Code Prover) or the server products (Polyspace Bug Finder Server and/or
Polyspace Code Prover Server).

Generate Scripts from Configuration
This example shows how to generate a script from a Bug Finder configuration. The same steps apply
to a Code Prover configuration.

1 Add source files to a new project in the Polyspace user interface.

Navigate to polyspaceroot\polyspace\bin, where polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2021a. Open the Polyspace
user interface using the polyspace executable and create a new project.

See “Add Source Files for Analysis in Polyspace User Interface” (Polyspace Bug Finder).
2 Specify the analysis options on the Configuration pane in the Polyspace project. To open this

pane, in the project browser, click the configuration node in your Polyspace project.

See “Specify Polyspace Analysis Options” (Polyspace Bug Finder).
3 Run the analysis. Based on compilation errors and analysis results, modify options as needed.

See “Run Polyspace Analysis on Desktop” (Polyspace Bug Finder).
4 Once your analysis options are set, generate a script from the project (.psprj file).

To generate a script from the demo project, Bug_Finder_Example:

a Load the project. Select Help > Examples > Bug_Finder_Example.psprj. A copy of this
project is loaded in the Examples folder in your default workspace. To find the project
location, place your cursor on the project name in the Project Browser pane.

b Navigate to the project location and enter:

polyspace -generate-launching-script-for Bug_Finder_Example.psprj -bug-finder

To generate Code Prover scripts, use the same command without the -bug-finder option.

If a project has more than one module (with more than one configuration in each module),
the options from the currently active configuration in the currently active module will be
extracted in the script.

 Configure Polyspace Analysis Options in User Interface and Generate Scripts

1-15

These files are generated for scripting the analysis:

• source_command.txt: Lists source files. This file can be provided as argument to the -
sources-list-file option.

• options_command.txt: Lists analysis options. This file can be provided as argument to the -
options-file option.

• launchingCommand.bat or launchingCommand.sh, depending on your operating system. The
file uses the polyspace-bug-finder or polyspace-code-prover executable to run the
analysis. The analysis runs on the source files listed in source_command.txt and uses the
options listed in options_command.txt.

Run Analysis with Generated Scripts
After configuring your analysis and generating scripts, you can use the generated files to automate
the subsequent analysis. You can automate the subsequent analysis using either the desktop or server
products.

To automate a Bug Finder analysis with the desktop product, Polyspace Bug Finder:

1 Generate scripts as mentioned in the previous section.
2 Execute the script launchingCommand.bat or launchingCommand.sh at periodic intervals or

based on predefined triggers.

To automate a Bug Finder analysis with the server product, Polyspace Bug Finder Server:

1 After specifying options in the user interface and before generating scripts, move the Polyspace
project (.psprj file) to the server where the server product is running.

2 Generate scripts as mentioned in the previous section.

The scripts refer to the server product executable instead of the desktop products.
3 Execute the script launchingCommand.bat or launchingCommand.sh at periodic intervals or

based on predefined triggers.

Alternatively, you can modify the script generated for the desktop product so that the server product
is executed. The script refers to the path to a desktop product executable, for instance:

"C:\Program Files\Polyspace\R2021a\polyspace\bin\polyspace-code-prover.exe"

Replace this with the path to a server product executable, for instance:

"C:\Program Files\Polyspace Server\R2021a\polyspace\bin\
 polyspace-code-prover-server.exe"

Sometimes, you might want to override some of the options in the options file. For instance, the
option to specify a results folder is hardcoded in the script. You can remove this option or override it
when launching the scripts:

launchingCommand -results-dir newResultsFolder

where newResultsFolder is the new results folder. This folder can even be dynamically generated
for each run.

1 Polyspace Analysis on Server After Code Submission

1-16

If you override multiple options in options_command.txt, you can save the overrides in a second
options file. Modify the script launchingCommand.bat or launchingCommand.sh so that both
options files are used. The script uses the option -options-file to use an options file, for instance:

-options-file options_command.txt

If you place your option overrides in a second options file overrides.txt, modify the script to
append a second -options-file option:

-options-file options_command.txt -options-file overrides.txt

See Also
-generate-launching-script-for

Related Examples
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
• “Prepare Scripts for Polyspace Analysis” on page 1-2

 Configure Polyspace Analysis Options in User Interface and Generate Scripts

1-17

Sample Scripts for Polyspace Analysis with Jenkins
In a continuous integration process, developers submit code to a shared repository. An automated
build system using a tool such as Jenkins builds and tests each submission at regular intervals or
based on predefined triggers and integrates the code. You can run a Polyspace analysis as part of this
process.

This topic provides sample Shell scripts that run a Polyspace analysis using Polyspace Bug Finder
Server and upload the results for review in the Polyspace Access web interface. The script also sends
e-mail notifications to potential reviewers. Notified reviewers can login to the Polyspace Access web
interface (if they have a Polyspace Bug Finder Access™ license) and review the results.

Extending Sample Scripts to Your Development Process
The scripts are written for a specific development toolchain but can be easily extended to the
processes used in your project, team or organization. The scripts are also meant to be run in a
Jenkins freestyle project. If you are using Jenkins Pipelines, see “Sample Jenkins Pipeline Scripts for
Polyspace Analysis” on page 1-32.

In particular, the scripts:

• Run on Linux only.

1 Polyspace Analysis on Server After Code Submission

1-18

The scripts use some Linux-specific commands such as export. However, these commands are
not an integral part of the Polyspace workflow. If you write Windows scripts (.bat files), use the
equivalent Windows commands instead.

• Work only with Jenkins after you install the Polyspace plugin.

The scripts are designed for the Jenkins plugin in these two ways:

• The scripts uses helper functions $ps_helper and $ps_helper_access for simpler
scripting. The helper functions export Polyspace results for e-mail attachments and use
command-line utilities to filter the results.

These helper functions are available only with the Jenkins plugin. However, the underlying
commands come with a Polyspace Bug Finder Server installation. On build automation tools
other than Jenkins, you can create these helper functions using the polyspace-report-
generator command or polyspace-access command (with the -export option). See “Send
Email Notifications with Polyspace Bug Finder Server Results”.

If you perform a distributed build in Jenkins, the plugin must be installed in the same folder in
the same operating system on both the master node and the agent node executing the
Polyspace analysis. Otherwise, you cannot use the helper functions.

• The scripts create text files for e-mail attachments and mail subjects and bodies for
personalized e-mails. If you install the Polyspace plugin in Jenkins, an extension of an e-mail
plugin is available for use in your Jenkins projects. The e-mail plugin allows you to easily send
the personalized e-mails with the previously created subjects, bodies and attachments. Without
the Polyspace plugin, you have to find an alternative way to send the e-mails.

• Run a Bug Finder analysis.

The scripts run Bug Finder on the demo example Bug_Finder_Example. If you install the
product Polyspace Bug Finder Server, the folder containing the demo example is
polyspaceserverroot/polyspace/examples/cxx/Bug_Finder_Example. Here,
polyspaceserverroot is the installation folder for Polyspace Server products, for
instance, /usr/local/Polyspace Server/R2019a/.

You can easily adapt the script to run Code Prover. Replace polyspace-bug-finder-server
with polyspace-code-prover-server. You can use the demo example
Code_Prover_Example specifically meant for Code Prover.

Prerequisites
To run a Polyspace analysis on a server and review the results in the Polyspace Access web interface,
you must perform a one-time setup.

• To run the analysis, you must install one instance of the Polyspace Server product.
• To upload results, you must set up the components required to host the web interface of Polyspace

Access.
• To view the uploaded results, you (and each developer reviewing the results) must have one

Polyspace license.

Similar requirements apply to a Polyspace Code Prover analysis on a server.

See “Install Polyspace Server and Access Products”.

 Sample Scripts for Polyspace Analysis with Jenkins

1-19

To install the Polyspace plugin, in the Jenkins interface, select Manage Jenkins on the left. Select
Manage Plugin. Search for the Polyspace plugin and then download and install the plugin.

Set Up Polyspace Plugin in Jenkins
The following steps outline how to set up a Polyspace analysis in Jenkins after installing the Polyspace
plugin. Note that the steps refer to Jenkins version 2.150.1. The steps in your Jenkins version and
your Polyspace plugin installation might be slightly different.

If you use a different build automation tool, you can perform similar setup steps.

Specify Paths to Polyspace Commands and Server Details for Polyspace Access Web
Interface

Specify the full paths of the folder containing the Polyspace commands and host name and port
number of the server hosting the Polyspace Access web interface. After you specify the paths, in your
scripts, you do not have to use the full paths to the commands or the server details for uploading
results.

1 In the Jenkins interface, select Manage Jenkins on the left. Select Configure System.
2 In the Polyspace section, specify the following:

• Paths to Polyspace commands.

The path refers to polyspaceserverroot/polyspace/bin, where
polyspaceserverroot is the installation folder for Polyspace Server products, for
instance, /usr/local/Polyspace Server/R2019a/.

• The host name, port number and protocol (http or https) used by the server hosting the
Polyspace Access web interface.

1 Polyspace Analysis on Server After Code Submission

1-20

The Name field allows you to define a convenient shorthand that you use later in Jenkins
projects.

3 In the E-mail Notification section, specify your company's SMTP server (and other details
needed for sending e-mails).

Create Jenkins Project for Running Polyspace

When you create a Jenkins project (for instance, a Freestyle project), you can refer to the Polyspace
paths by the global shorthands that you defined earlier.

To create a Jenkins project for running Polyspace:

 Sample Scripts for Polyspace Analysis with Jenkins

1-21

1 In the Jenkins interface, select New Item on the left. Select Freestyle Project.
2 In the Build Environment section of the project, enter the two shorthand names you defined

earlier:

• The name for the path to the folder containing the Polyspace commands
• The name for the details of the server hosting the Polyspace Access web interface.

Also, enter a login and password that can be used to upload to the Polyspace Access web
interface. The login and password must be associated with a Polyspace Bug Finder Access
license.

3 In the Build section of the project, you can enter scripts that use the Polyspace commands and
details of the server hosting the Polyspace Access web interface.

1 Polyspace Analysis on Server After Code Submission

1-22

The scripts run a Polyspace analysis and upload results to the Polyspace Access web interface.
4 In the Post-build Actions section of the project, configure e-mail addresses and attachments to

be sent after the analysis.

 Sample Scripts for Polyspace Analysis with Jenkins

1-23

Script to Run Bug Finder, Upload Results and Send Common
Notification
This script runs a Bug Finder analysis, uploads the results and exports defects with high impact for a
common notification email to all recipients.

The script assumes that the current folder contains a folder sources with .c files. Otherwise modify
the line gcc -c sources/*.c with the full path to the sources.

set -e
export RESULT=ResultBF
export PROG=Bug_Finder_Example
export PARENT_PROJECT=/public/BugFinderExample_PRS_01

==
Trace build command and create an options file

build_cmd="gcc -c sources/*.c"
polyspace-configure \
 -allow-overwrite \
 -allow-build-error \
 -prog $PROG \
 -author jenkins \
 -output-options-file $PROG.psopts \
 $build_cmd

==
Run Bug Finder on the options file

polyspace-bug-finder-server -options-file $PROG.psopts -results-dir $RESULT

==
Upload results to Polyspace Access web interface

$ps_helper_access -create-project $PARENT_PROJECT
$ps_helper_access \
 -upload $RESULT \
 -parent-project $PARENT_PROJECT \
 -project $PROG

==
Export results filtered for defects with "High" impact

$ps_helper_access \
 -export $PARENT_PROJECT/$PROG \
 -output Results_All.tsv \
 -defects High

==
Finalize Jenkins status

exit 0

1 Polyspace Analysis on Server After Code Submission

1-24

After the script is run, you can create a post-build action to send an e-mail to all recipients with the
exported file Results_All.tsv.

In this script, $ps_helper_access is a shorthand for the polyspace-access command with the
options specifying host name, port, login and encrypted password included. The other polyspace-
access options are explicitly written in the script.

Script to Run Bug Finder, Upload Results and Send Personalized
Notification
This script runs the previous Bug Finder analysis and uploads the results. However, the script differs
from the previous script in these ways:

• The script uses a run_command function that prints a message when running a command. The
function helps determine from the console output which part of the script is running.

• When exporting the results, the script creates a separate results file for different owners.

• A master file Results_All.tsv contains all results. This file is sent in e-mail attachment to a
manager. The manager email is configured in the post-build step.

If the file contains more than 10 defects, the build status is considered as a failure. The script
sends a status UNSTABLE in the e-mail notification.

• The results file Results_Users_userA.tsv exported for userA contains defects from the
group Programming and with impact High.

This result file is sent in e-mail attachment to userA.
• The results file Results_Users_userB.tsv exported for userB contains defects from the

function bug_memstdlib().

 Sample Scripts for Polyspace Analysis with Jenkins

1-25

This result file is sent in e-mail attachment to userB.
• A separate mail subject is created for the manager in the file mailsubject_manager.txt and

for users userA and userB in the files mailsubject_user_userA.txt and
mailsubject_user_userB.txt respectively.

A mail body is created for the email to the manager in the file mailbody_manager.txt.

The script:

• Assumes that the current folder contains a folder sources with .c files.

Otherwise, modify the line gcc -c sources/*.c with the full path to the sources.
• Assumes users named userA and userB. In particular, the email addresses

userA@companyname.com and userB@companyname.com (determined from the user name and
SMTP server configured earlier) must be real e-mail addresses.

Replace the names with real user names.

1 Polyspace Analysis on Server After Code Submission

1-26

set -e
export RESULT=ResultBF
export PROG=Bug_Finder_Example
export REPORT=Results_List.tsv

==
Define function to print message while running command
run_command()
{
$1 is a message
$2 $3 ... is the command to dump and to run
message=$1
shift
cat >> mailbody_manager.txt << EOF
$(date): $message

EOF
"$@"
}

==
Initialize mail body
cat > mailbody_manager.txt << EOF
Dear Manager(s)

Here is the report of the Jenkins Job ${JOB_NAME} #${BUILD_NUMBER}
It contains all Red Defect found in Bug Finder Example project

EOF

==
Trace build command and create options file

build_cmd="gcc -c sources/*.c"
run_command "Tracing build command", \
 polyspace-configure \
 -allow-overwrite \
 -allow-build-error \
 -prog $PROG \
 -author jenkins \
 -output-options-file $PROG.psopts \
 $build_cmd

==
Run Bug Finder on the options file

run_command "Running Bug finder" \
 polyspace-bug-finder-server -options-file $PROG.psopts\
 -results-dir $RESULT

==
Upload results to Polyspace Access web interface

run_command "Creating Project $PARENT_PROJECT" \

 Sample Scripts for Polyspace Analysis with Jenkins

1-27

 $ps_helper_access -create-project $PARENT_PROJECT

run_command "Uploading on $PARENT_PROJECT/$PROG" \
 $ps_helper_access \
 -upload $RESULT \
 -parent-project $PARENT_PROJECT \
 -project $PROG \
 -output upload.output
PROJECT_RUNID=$($ps_helper prs_print_runid upload.output)
PROJECT_URL=$($ps_helper prs_print_projecturl upload.output $POLYSPACE_ACCESS_URL)

==
Export report

run_command "Exporting report from $PARENT_PROJECT/$PROG" \
 $ps_helper_access \
 -export $PROJECT_RUNID \
 -output $REPORT \
 -defects High

==
Filter Reports

run_command "Filtering reports for defects" \
 $ps_helper report_filter \
 $REPORT \
 Results_All.tsv \
 Family Defect \

==
Filter Reports for userA and userB

run_command "Filtering Reports for userA based on Group and Information" \
 $ps_helper report_filter \
 $REPORT \
 Results_Users.tsv \
 userA \
 Group Programming \
 Information "Impact: High"
run_command "Filtering Reports for userB based on Function" \
 $ps_helper report_filter \
 $REPORT \
 Results_Users.tsv \
 userB \
 Function "bug_memstdlib()"

==
Update Jenkins status
Jenkins build status is unstable when there are more than 10 Defects

BUILD_STATUS=$($ps_helper report_status Results_All.tsv 10)

==
Update mail body and mail subject

1 Polyspace Analysis on Server After Code Submission

1-28

NB_FINDINGS_ALL=$($ps_helper report_count_findings Results_All.tsv)
NB_FINDINGS_USERA=$($ps_helper report_count_findings Results_Users_userA.tsv)
NB_FINDINGS_USERB=$($ps_helper report_count_findings Results_Users_userB.tsv)
cat >> mailbody_manager.txt << EOF

Number of defects: $NB_FINDINGS_ALL
Number of findings owned by userA: $NB_FINDINGS_USERA
Number of findings owned by userB: $NB_FINDINGS_USERB

All results are uploaded in: $PROJECT_URL

Build Status: $BUILD_STATUS

EOF

cat >> mailsubject_manager.txt << EOF
Polyspace run completed with status $BUILD_STATUS and $NB_FINDINGS_ALL findings
EOF

for user in userA userB
do
echo "$user - $($ps_helper report_count_findings Results_Users_$user.tsv)) findings"\
 > mailsubject_user_$user.txt
done

==
Exit with correct build status

["$BUILD_STATUS" != "SUCCESS"] && exit 129
exit 0

After the script is run, you can create a post-build action to send an e-mail to a manager with the
exported file Results_All.tsv. Specify the e-mail address in the Recipients field, the email
subject in the Mail Subject field and the email body in the Mail Body field.

In addition, a separate e-mail is sent to userA and userB with the files Results_Users_userA.tsv
and Results_Users_userB.tsv in attachment (and the content of
mailsubject_user_userA.txt and mailsubject_user_userB.txt as mail subjects). The e-
mail addresses are userA@companyname.com and userB@companyname.com (determined from the
user name and SMTP server configured earlier).

 Sample Scripts for Polyspace Analysis with Jenkins

1-29

The script uses the helper function $ps_helper to filter the results based on group, impact and
function. The helper function uses command-line utilities to filter the master file for results and
perform actions such as create a separate results file for each owner. The function takes these actions
as arguments:

• report_filter: Filters results from exported text file based on contents of the text file.

For instance:

$ps_helper report_filter \
 Results_List.tsv \
 Results_Users.tsv \
 userA \
 Group Programming \
 Information "Impact: High"

reads the file Results_List.tsv and writes to the file Results_Users_userA.tsv. The text
file Results_List.tsv contains columns for Group and Information. Only those rows where
the Group column contains Programming and the Information column contains Impact:
High are written to the file Results_Users_userA.tsv.

1 Polyspace Analysis on Server After Code Submission

1-30

• report_status: Returns UNSTABLE or SUCCESS based on the number of results in a file.

For instance:

BUILD_STATUS=$($ps_helper report_status Results_All.tsv 10))

returns UNSTABLE if the file Results_All.tsv contains more than 10 results (10 rows).
• report_count_findings: Reports number of results in a file.

For instance:

NB_FINDINGS_ALL=$($ps_helper report_count_findings Results_All.tsv)

returns the number of results (rows) in the file Results_All.tsv.
• prs_print_projecturl: Uses the host name and port number to create the URL of the

Polyspace Access web interface.

For instance:

PROJECT_URL=$($ps_helper prs_print_projecturl Results_All.tsv $POLYSPACE_ACCESS_URL)

reads the file Results_All.tsv (exported by the polyspace-access command) and extracts
the URL of the Polyspace Access web interface in $POLYSPACE_ACCESS_URL and the URL of the
current project in $PROJECT_URL.

See Also
polyspace-access | polyspace-bug-finder-server | polyspace-code-prover-server |
polyspace-configure | polyspace-report-generator

More About
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
• “Send Email Notifications with Polyspace Bug Finder Server Results”
• “Sample Jenkins Pipeline Scripts for Polyspace Analysis” on page 1-32
• “Offload Polyspace Analysis from Continuous Integration Server to Another Server” on page 1-9

 Sample Scripts for Polyspace Analysis with Jenkins

1-31

Sample Jenkins Pipeline Scripts for Polyspace Analysis
Jenkins Pipelines enable automating the workflow of a continuous delivery pipeline through scripts in
Jenkins. You can write Pipeline scripts that build projects, run test suites and perform all necessary
checks before your code is ready for shipping. You can check in these scripts as part of a version
control system and subject them to the same review and versioning as the code itself.

You can run a Polyspace analysis in a Jenkins Pipeline script. If you are not using Freestyle Projects
instead of Pipelines in Jenkins, use the Polyspace plugin for scripting conveniences. See “Sample
Scripts for Polyspace Analysis with Jenkins” on page 1-18. If you are using Pipelines, modify the script
provided to run a Polyspace analysis.

Prerequisites
To run a Polyspace analysis on a server and review the results in the Polyspace Access web interface,
you must perform a one-time setup.

• To run the analysis, you must install one instance of the Polyspace Server product.
• To upload results, you must set up the components required to host the web interface of Polyspace

Access.
• To view the uploaded results, you and each developer reviewing the results must have one

Polyspace license.

See “Install Polyspace Server and Access Products”.

Run Polyspace Analysis in Stages in a Pipeline Script
To create a Jenkins Pipeline script:

1 In the Jenkins interface, select New Item on the left. Select Pipeline.
2 In the Pipeline section of the project, select Pipeline script for Definition. Enter this

script.

The parts in bold indicate places where you have to modify the script for your source code and
Polyspace installation.

The script is not available in the PDF documentation. Search for Polyspace Jenkins
Pipelines in the MathWorks® online documentation and copy the script from the online version
of this page.

When you build this project, you can see the various stages of the analysis like this:

1 Polyspace Analysis on Server After Code Submission

1-32

This script can be part of a larger script that you save in a Jenkinsfile and commit to your version
control system. See Using a Jenkinsfile.

You can modify the script as needed:

• The script runs each step of the Polyspace analysis workflow in a separate stage section. You can
combine several steps together in one stage.

• The script runs Linux Shell commands by using the sh directive. You can run Windows commands
by using the bat directive instead.

• The script uses data from the Credentials plugin to extract user name and password. If you save
credentials in some other form, you can replace the withCredentials command that binds user
credentials to variables.

• The script builds source code using a makefile on a Git sandbox with this make command:

make -C $git_sandbox

If you use a different build command, you can replace this line with your build command.

For more information on the Pipeline-specific syntax in this script, see:

• Pipeline Syntax: Describes node, stage, label.
• Pipeline Steps Reference: Describes sh, mail.
• Credentials Binding Plugin: Describes withCredentials.

For more information on the Polyspace commands in this script, see:

• polyspace-configure
• polyspace-bug-finder-server (also polyspace-code-prover-server)
• polyspace-access

See Also
“Sample Scripts for Polyspace Analysis with Jenkins” on page 1-18

 Sample Jenkins Pipeline Scripts for Polyspace Analysis

1-33

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://www.jenkins.io/doc/book/pipeline/syntax/
https://www.jenkins.io/doc/pipeline/steps/
https://www.jenkins.io/doc/pipeline/steps/credentials-binding/

Run Polyspace Analysis on Generated Code by Using Packaged
Options Files

When you start a Polyspace analysis directly from the Simulink toolstrip, the analysis takes the
model-specific context, such a design ranges, into consideration. When running a Polyspace analysis
without access to Simulink, you must specify the model-specific information by using options files.
Instead of authoring these options files, use the options files generated and packaged by the function
polyspacePackNGo.

Preserving the Simulink model context information when running a Polyspace analysis can be useful
in various situations. For instance:

• Distributed workflow: A Simulink user generates code from a model and sends the code to another
development environment. In this environment, a Polyspace user, who might not have Simulink,
runs a separate analysis of the generated code. By using the packaged options files, the design
ranges and other model-specific information is preserved in the Polyspace analysis.

• Analysis options not available in Simulink: Some Polyspace analysis options are available only
when the Polyspace analysis is run separately from Simulink. Use packaged options files to run a
separate Polyspace analysis while preserving the model-specific information. For instance, analyze
concurrent threads in generated code by running a Polyspace analysis in the generated code by
using the packaged options files.

You must have Simulink to run the function polyspacePackNGo. You do not need Polyspace to
generate the options files from a Simulink model. The polyspacePackNGo function supports code
generated by Embedded Coder® and TargetLink®. For a tutorial on using polyspacePackNGo, see
“Analyze Code Generated as Standalone Code in a Distributed Workflow” (Simulink).

Generate and Package Polyspace Options Files
To generate and package Polyspace options file for analyzing code generated from a Simulink model,
use polyspacePackNGo.

1 In the Simulink Editor, open the Configuration Parameters dialog box and configure the model for
code generation.

2 To configure the model for compatibility with Polyspace, select ert.tlc as the System target
file

3 To enable generating a code archive, select the option Package code and artifacts. Optionally,
provide a name for the options package in the field Zip file name. If your code contains a custom
code block, select Use the same custom code settings as Simulation target in the Code
Generation> Custom Code pane.

Alternatively, in the MATLAB Command Window, enter:

% Configure the Simulink model mdlName for code generation
configSet = getActiveConfigSet(mdlName);
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
set_param(configSet, 'PackageName', 'CodeArchive.zip');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');
set_param(configSet,'RTWUseSimCustomCode','on');

4 Generate the code archive.

• To generate an archive of standalone generated code from the top model, use the function
slbuild.

1 Polyspace Analysis on Server After Code Submission

1-34

• To generate code as a model reference, use the function slbuild. After generating code as
model reference, create the code archive by using the function packNGo.

• Alternatively, you can use TargetLink to generate the code. Create the code archive by
archiving the generated code into a zip file.

5 To generate and package the Polyspace option files, in the MATLAB Command Window ,use the
polyspacePackNGo function :

zipFile = polyspacePackNGo(mdlName);

See “Generate and Package Polyspace Options Files”.

If you use TargetLink to generate code, then use the TargetLink subsystem name as the input
argument to polyspacepacknGo.

6 Optionally, you can use a pslinkoptions object as a second argument to modify the default
model configuration for the Polyspace analysis. Create a pslinkoptions object, modify model
configurations and specify the object when creating the archive:

psOpt = pslinkoptions(mdlName);
psOpt.InputRangeMode = 'FullRange';
psOpt.ParamRangeMode = 'DesignMinMax';
zipFile = polyspacePackNGo(mdlName,psOpt);

See “Package Polyspace Options Files That Have Specific Polyspace Analysis Options”.
7 Use the optional third argument to specify whether to generate and package Polyspace options

files for code generated as a model reference. Suppose you generated code as a model reference
by using the slbuild function. To generate and package Polyspace options for the code, at the
MATLAB Command Window, enter:

zipFile = polyspacePackNGo(mdlName,[],true);

See “Package Polyspace Options Files for Code Generated as a Model Reference”.

The function polyspacepackNGo returns the full path to the archive containing the options files.
The files are located in the polyspace folder within the archived folder hierarchy. The content of
the polyspace folder depends on the inputs of polyspacePackNGo function.

• If you do not specify the optional second and third arguments, then the folder polyspace
contains these options files in a flat hierarchy:

• optionsFile.txt: This file specifies the source files, the include files, data range
specifications, and analysis options required for analyzing the generated code by using
Polyspace. If your code contains custom C code, then this file specifies the relative paths of
the custom source and header files.

• modelname_drs.xml: This file specifies the design range specification of the model.
• linkdata.xml: This file links the generated code to the components of the model.

• If you specify psOpts.ModelbyModelRef = true, then corresponding options files are
generated for all referenced models. These options files are stored in separate folders named
polyspace_<referenced model name> within the code archive. The folder polyspace
contains the options files for the top model.

Run Polyspace Analysis by Using the Packaged Options Files
Once the code archive and the Polyspace option files are generated, you can use the archive to run a
Polyspace analysis on the generated code in a different development environment without Simulink.

 Run Polyspace Analysis on Generated Code by Using Packaged Options Files

1-35

1 Unzip the code archive and locate the polyspace folder.
2 On a Windows or Linux command line, run: productname -options-file optionsFile.txt

-results-dir resultdir.

• productname corresponds to one of: polyspace-bug-finder, polyspace-code-prover, polyspace-
bug-finder-server, or polyspace-code-prover-server.

• resultdir corresponds to the location of the Polyspace results. This argument is optional.

To link the generated code with the Simulink model, the file linkdata.xml is required. In case
the file linkdata.xml is not generated in the options file archive, use the option Code
Generator Support in Polyspace desktop User Interface to specify which comments in the code
act as links to the Simulink model. In the Polyspace desktop User Interface, select Tools >
Preferences and locate the Miscellaneous tab. From the context menu Code comments that
act as code-to-model-link, select the code generator that you used. If you select User defined,
then specify the comments that act as a code-to-model link by specifying their prefix in the field
Comments beginning with. For instance, if you specify the prefix as //Link_to_model, then
Polyspace interprets comments starting with //Link_to_model as links to model.

If you are using Polyspace Access to view the results, upload the file linkdata.xml in the same
folder as your Polyspace results. You cannot link the code with Simulink model if you do not have
the file linkdata.xml or if you upload it outside the Polyspace result folder.

3 To review the result, upload it to Polyspace Access and view the results in a web browser.
Alternatively, view the result by using the user interface of the Polyspace desktop products.

See Also
packNGo | polyspace.Project | slbuild

More About
• “Analyze Code Generated as Standalone Code in a Distributed Workflow” (Simulink)
• “Integrate Polyspace Server Products with MATLAB” on page 4-2

1 Polyspace Analysis on Server After Code Submission

1-36

Analyze Code Generated as Standalone Code in a Distributed
Workflow

Generate and package Polyspace options files from a Simulink model by using the function
polyspacepackNGo. Use these options files to run a Polyspace analysis on the generated code that
uses model-specific information, such as design range specifications, without requiring Simulink.

Open Model
The model demo_math_operations performs various mathematical operations on the model inputs.
The model has a C Function block that executes a custom C code. The model also has a C Caller block
that calls the C function GMean, which is implemented in the source file GMean.c. To open the model
for code generation and packaging Polyspace options file, search for the current topic in the MATLAB
help browser and click the Open Model button. Alternatively, in the MATLAB Command Window,
paste and run the following code.

openExample('simulink_general/PPNGStandAloneExample');
open_system('demo_math_operations');

 Analyze Code Generated as Standalone Code in a Distributed Workflow

1-37

Configure Model
To configure the model for generating code and packaging Polyspace options files, specify these
configuration parameters:

• To create an archive containing the generated code, set
'PackageGeneratedCodeAndArtifacts' to true.

• Specify a name for the code archive. For instance, set the name to genCodeArchive.zip.
• To use the custom code setting specified in Simulation Target during code generation, set

'RTWUseSimCustomCode' to 'on'.
• To make the model and the generated code compatible with Polyspace, set ert.tlc as the system

target file. See “Recommended Model Configuration Parameters for Polyspace Analysis”
(Polyspace Bug Finder).

In Command Window or Editor, enter these parameter configurations:

configSet = getActiveConfigSet('demo_math_operations');
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
set_param(configSet, 'PackageName', 'genCodeArchive.zip');

1 Polyspace Analysis on Server After Code Submission

1-38

set_param(configSet, 'SystemTargetFile', 'ert.tlc');
set_param(configSet,'RTWUseSimCustomCode','on')

Generate Code Archive
Specify a folder for storing the generated code. To start code generation, in the Command Window or
in the Editor, enter:

codegenFolder = 'demo_math_operations_ert_rtw';
if exist(fullfile(pwd,codegenFolder), 'dir') == 0
 slbuild('demo_math_operations')
end

Because PackageGeneratedCodeAndArtifacts is set to true, the generated code is packed into
the archive genCodeArchive.zip.

Generate and Package Polyspace Options File
To generate Polyspace options files for the generated code, in the Command Window or in the Editor,
enter:

zipFile = polyspacePackNGo('demo_math_operations');

In the archive genCodeArchive.zip, find the options files in the folder <current folder>/
polyspace.

Run Polyspace Analysis by Using the Packaged Options Files
1 Unzip the code archive genCodeArchive.zip and locate the <current folder>/polyspace

folder.
2 Open a command-line terminal and change your working folder to the polyspace subfolder of

the unzipped folder by using the cd command.
3 Start a Polyspace analysis.

• To run a desktop Polyspace analysis, use either polyspace-code-prover or polyspace-
bug-finder. To run the Polyspace analysis in a server, use either polyspace-bug-finder-
server or polyspace-code-prover-server. Polyspace Bug Finder and Code Prover
analyze the code differently. See “Choose Between Polyspace Bug Finder and Polyspace Code
Prover”.

• Specify the file optionsFile.txt as the argument to -options-file.

To run a Code prover analysis, run this command: polyspace-code-prover -options-file
optionsFile.txt -results-dir Results.

4 Follow the progress of the analysis in the log file that is generated in the Results folder.
5 To view the results in the desktop user interface, in the command-line interface, enter:

polyspace Results\ps_results.pscp. The extension of the ps_results file changes
depending on whether you run a Code Prover analysis or a Bug Finder analysis. The result
contains several orange checks.

 Analyze Code Generated as Standalone Code in a Distributed Workflow

1-39

Alternatively, upload the result to Polyspace Access. See “Upload Results to Polyspace Access”
(Polyspace Bug Finder Access).

6 Address the results. For more information, see “Address Results in Polyspace Access Through
Bug Fixes or Justifications” (Polyspace Bug Finder Access).

See Also
packNGo | polyspace.Project | slbuild

More About
• “Integrate Polyspace Server Products with MATLAB” on page 4-2

1 Polyspace Analysis on Server After Code Submission

1-40

Use Existing Software Development
Specifications for Polyspace Analysis

• “Create Polyspace Analysis Configuration from Build Command” on page 2-2
• “polyspace-configure Source Files Selection Syntax” on page 2-4
• “Modularize Polyspace Analysis by Using Build Command” on page 2-6

2

Create Polyspace Analysis Configuration from Build Command
To run Polyspace on a server during continuous integration, you must configure all analysis options
beforehand so that the analysis completes without errors. These options must be updated as
necessary to keep up with new code submissions. If you use existing artifacts such as a build
command (makefile) to build new code submissions, you can reuse the build command to configure a
Polyspace analysis and stay updated with new submissions. With the polyspace-configure
command, you can monitor the execution of a build command and create an options file for analysis
with Polyspace.

This topic shows a simple tutorial illustrating how to create an options file from a build command and
use the file for the subsequent analysis. The topic uses a Linux makefile and the GCC compiler, but
you can adapt the commands to other operating systems such as Windows and other compilers such
as Microsoft® Visual Studio®.

1 Cope the demo source files from polyspaceserverroot\polyspace\examples\cxx
\Bug_Finder_Example\sources to a folder with write permissions. Here,
polyspaceserverroot is the root installation folder of the Polyspace server products, for
instance, C:\Program Files\Polyspace Server\R2019a.

2 Create a simple makefile that compiles the demo source files. Save the makefile in the same
folder as the source files.

For instance, create a file named makefile and add this content:

CC := gcc
SOURCES := $(wildcard *.c)

all: $(CC) -c $(SOURCES)

Check that the makefile builds the source files successfully. Open a command terminal, navigate
to the folder (using cd) and enter:

make

The make command should complete execution without errors.
3 Trace the build command with polyspace-configure and create an options file

compile_opts.

polyspace-configure -output-options-file compile_opts make

4 Create a second options file with additional options. For instance, create a file run_opts with
this content:

-checkers numerical
-report-template BugFinder
-output-format pdf

The options run all numerical checkers in Bug Finder and creates a PDF report after analysis
using the BugFinder template.

5 Run a Bug Finder analysis with the two options files: compile_opts created from your build
command and run_opts created manually.

2 Use Existing Software Development Specifications for Polyspace Analysis

2-2

polyspace-bug-finder-server -options-file compile_opts -options-file run_opts

The analysis should complete without errors. You can open the results in the Polyspace user
interface or upload the results to the Polyspace Access web interface (using the polyspace-
access command).

To run Code Prover instead of Bug Finder, use the polyspace-code-prover-server command
instead of the polyspace-bug-finder-server command.

You can run a similar analysis using MATLAB scripts. Replace polyspace-bug-finder-server
with the function polyspaceBugFinderServer and polyspace-configure with the function
polyspaceConfigure.

See Also
polyspace-bug-finder-server | polyspace-configure

See Also

More About
• “Prepare Scripts for Polyspace Analysis” on page 1-2
• “Specify Target Environment and Compiler Behavior” on page 5-2
• “polyspace-configure Source Files Selection Syntax” on page 2-4
• “Modularize Polyspace Analysis by Using Build Command” on page 2-6

 Create Polyspace Analysis Configuration from Build Command

2-3

polyspace-configure Source Files Selection Syntax
When you create projects by using polyspace-configure, you can include or exclude source files
whose paths match the pattern that you pass to the options -include-sources or -exclude-
sources. You can specify these two options multiple times and combine them at the command line.

This folder structure applies to these examples.

To try these examples, use the demo files in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\sources-select. polyspaceroot is the
Polyspace installation folder.

Run this command:

polyspace-configure -allow-overwrite -include-sources "glob_pattern" \
-print-excluded-sources -print-included-sources make -B

glob_pattern is the glob pattern that you use to match the paths of the files you want to include or
exclude from your project. To ensure the shell does not expand the glob patterns you pass to
polyspace-configure, enclose them in double quotes.

In the table, the examples assume that sources is a top-level folder.

Glob Pattern Syntax Example
No special characters, slashes ('/'), or backslashes
('\').

Pattern matches corresponding files, but not
folders.

-include-sources "main.c" matches:

/sources/app/main.c

Pattern contains '*' or '?' special characters.

'*' matches zero or more characters in file or
folder name.

'?' matches one character in file or folder name.

The matches do not include path separators.

-include-sources "b?.c" matches:

/sources/lib/b/b1.c

/sources/lib/b/b2.c

-include-sources "app/*.c" matches:

/sources/app/main.c

2 Use Existing Software Development Specifications for Polyspace Analysis

2-4

Glob Pattern Syntax Example
Pattern starts with slash '/' (UNIX®) or drive
letter (Windows).

Pattern matches absolute path only.

-include-sources "/a" does not match
anything.

-include-sources "/sources/app"
matches:

/sources/app/main.c
Pattern ends with a slash (UNIX), backslash
(Windows), or '**'.

Pattern matches all files under specified folder.

'**' is ignored if it is at the start of the pattern.

-include-sources "a/" matches

/sources/lib/a/a1.c

/sources/lib/a/a2.c

Pattern contains '/**/' (UNIX) or '**\'
(Windows). Pattern matches zero or more folders
in the specified path.

-include-sources "lib/**/?1.c" matches:

/sources/lib/a/a1.c

/sources/lib/b/b1.c
Pattern starts with '.' or '..'.

Pattern matches paths relative to the path where
you run the command.

If you start polyspace-configure from /
sources/lib/a,

-include-sources "../lib/**/b?.c"
matches:

/sources/lib/b/b1.c

/sources/lib/b/b2.c
Pattern is a UNC path on Windows . If your files are on server myServer:

\\myServer\sources\lib\b** matches:

\\myServer\sources\lib\b\b1.c

\\myServer\sources\lib\b\b2.c

polyspace-configure does not support these glob patterns:

• Absolute paths relative to the current drive on Windows.

For instance, \foo\bar.
• Relative paths to the current folder.

For instance, C:foo\bar.
• Extended length paths in Windows.

For instance, \\?\foo.
• Paths that contain '.' or '..' except at the start of the pattern.

For instance, /foo/bar/../a?.c.
• The '*' character by itself.

 polyspace-configure Source Files Selection Syntax

2-5

Modularize Polyspace Analysis by Using Build Command
To configure the Polyspace analysis, you can reuse the compilation options in your build command
such as make. First, you trace your build command with polyspace-configure (or
polyspaceConfigure in MATLAB) and create a Polyspace options file. You later specify this options
file for the subsequent Polyspace analysis.

If your build command creates several binaries, by default polyspace-configure groups the
source files for all binaries into one Polyspace options file. If binaries that use the same source files or
functions are compiled with different options, you lose this distinction in the subsequent Polyspace
analysis. The presence of the same function multiple times can lead to link errors during the
Polyspace analysis and sometimes to incorrect results.

This topic shows how to create a separate Polyspace options file for each binary created in your
makefile. Suppose that a makefile creates four binaries: two executable (target cmd1 and cmd2) and
two shared libraries (target liba and libb). You can create a separate Polyspace options file for
each of these binaries.

To try this example, use the files in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\multiple_modules. Here, polyspaceroot is
the Polyspace installation folder, for instance, C:\Program Files\Polyspace\R2021a or
C:\Program Files\Polyspace Server\R2021a.

Build Source Code
Inspect the makefile. The makefile creates four binaries:

2 Use Existing Software Development Specifications for Polyspace Analysis

2-6

CC := gcc
LD := ld

LIBA_SOURCES := $(wildcard src/liba/*.c)
LIBB_SOURCES := $(wildcard src/libb/*.c)
CMD1_SOURCES := $(wildcard src/cmd1/*.c)
CMD2_SOURCES := $(wildcard src/cmd2/*.c)
LIBA_OBJ := $(notdir $(LIBA_SOURCES:.c=.o))
LIBB_OBJ := $(notdir $(LIBB_SOURCES:.c=.o))
CMD1_OBJ := $(notdir $(CMD1_SOURCES:.c=.o))
CMD2_OBJ := $(notdir $(CMD2_SOURCES:.c=.o))
LIBB_SOBJ := libb.so
LIBA_SOBJ := liba.so

all: cmd1 cmd2

cmd1: liba libb
 $(CC) -o $@ $(CMD1_SOURCES) $(LIBA_SOBJ) $(LIBB_SOBJ)

cmd2: libb
 $(CC) -c $(CMD2_SOURCES)
 $(LD) -o $@ $(CMD2_OBJ) $(LIBB_SOBJ)

liba: libb
 $(CC) -fPIC -c $(LIBA_SOURCES)
 $(CC) -shared -o $(LIBA_SOBJ) $(LIBA_OBJ)

libb:
 $(CC) -fPIC -c $(LIBB_SOURCES)
 $(CC) -shared -o $(LIBB_SOBJ) $(LIBB_OBJ)

.PHONY: clean
clean:
 rm *.o

The binaries created have the dependencies shown in this figure. For instance, creation of the object
cmd1.o depends on all .c files in the folder cmd1 and the shared objects liba.so and libb.so.

 Modularize Polyspace Analysis by Using Build Command

2-7

Build your source code by using the makefile. Use the -B flag to ensure full build.

make -B

Make sure that the build runs to completion.

Create One Polyspace Options File for Full Build
Trace the build command by using polyspace-configure. Use the option -output-options-
file to create a Polyspace options file psoptions from the build command.

polyspace-configure -output-options-file psoptions make -B

Run Bug Finder or Code Prover by using the previously created options file: Save the analysis results
in a results subfolder.

polyspace-bug-finder-server -options-file psoptions -results-dir results

You see this link error (warning in Bug Finder):

Procedure 'main' multiply defined.

The error occurs because the files cmd1/cmd1_main.c and cmd2/cmd2_main.c both have a main
function. When you run your build command, the two files are used in separate targets in the
makefile. However, polyspace-configure by default creates one options file for the full build. The
Polyspace options file contains both source files resulting in conflicting definitions of the main
function.

2 Use Existing Software Development Specifications for Polyspace Analysis

2-8

To verify the cause of the error, open the Polyspace options file psoptions. You see these lines that
include the files with conflicting definitions of the main function.

-sources src/cmd1/cmd1_main.c
-sources src/cmd2/cmd2_main.c

Create Options File for Specific Binary in Build Command
To avoid the link error, build the source code for a specific binary when tracing your build command
by using polyspace-configure.

For instance, build your source code for the binary cmd1.o. Specify the makefile target cmd1 for
make, which creates this binary.

polyspace-configure -output-options-file psoptions make -B cmd1

Run Bug Finder or Code Prover by using the previously created options file.

polyspace-bug-finder-server -options-file psoptions -results-dir results

The link error does not occur and the analysis runs to completion. You can open the Polyspace options
file psoptions and see that only the source files in the cmd1 subfolder and the files involved in
creating the shared objects are included with the -sources option. The source files in the cmd2
subfolder, which are not involved in creating the binary cmd1.o, are not included in the Polyspace
options file.

Special Considerations for Libraries (Code Prover only)

If you trace the creation of a shared object from libraries, the source files extracted do not contain a
main function. In the subsequent Code Prover analysis, you can see an error because of the missing
main.

Use the Polyspace option Verify module or library (-main-generator) to generate a main
function. Specify the option in the options file that was created or directly at the command line. See
“Verify C Application Without main Function” (Polyspace Code Prover Server).

In C++, use these additional options for classes:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-calls)

Create One Options File Per Binary Created in Build Command
To create an options file for a specific binary created in the build command, you must know the
details of your build command. If you are not familiar with the internal details of the build command,
you can create a separate Polyspace options file for every binary created in the build command. The
approach works for binaries that are executables, shared (dynamic) libraries and static libraries.

 Modularize Polyspace Analysis by Using Build Command

2-9

This approach works only if you use these compilers:

• GNU C or GNU C++
• Microsoft Visual C++

Trace the build command by using polyspace-configure.To create a separate options file for each
binary, use the option -module with polyspace-configure.

polyspace-configure -module -output-options-path optionsFilesFolder make -B

The command creates options files in the folder optionsFilesFolder. In the preceding example,
the command creates four options files for the four binaries:

• cmd1.psopts
• cmd2.psopts
• liba_so.psopts
• libb_so.psopts

You can run Polyspace on the code implementation of a specific binary by using the corresponding
options file. For instance, you can run Code Prover on the code implementation of the binary created
from the makefile target cmd1 by using this command:

polyspace-bug-finder-server -options-file cmd1.psopts -results-dir results

For this approach, you do not need to know the details of your build command. However, when you
create a separate options file for each binary in this way, each options file contains source files
directly involved in the binary and not through shared objects. For instance, the options file
cmd1.psopts in this example specifies only the source files in the cmd1 subfolder and not the source
files involved in creating the shared objects liba.so and libb.so. The subsequent analysis by
using this options file cannot access functions from the shared objects and uses function stubs
instead. In the Code Prover analysis, if you see too many orange checks due to the stubbing, use the
approach stated in the section “Create Options File for Specific Binary in Build Command” on page 2-
9.

Special Considerations for Libraries (Code Prover only)

If you trace the creation of a shared object from libraries, the source files extracted do not contain a
main function. In the subsequent Code Prover analysis, you can see an error because of the missing
main.

Use the Polyspace option Verify module or library (-main-generator) to generate a main
function. Specify the option in the options file that was created or directly at the command line. See
“Verify C Application Without main Function” (Polyspace Code Prover Server).

In C++, use these additional options for classes:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-calls)

2 Use Existing Software Development Specifications for Polyspace Analysis

2-10

See Also
polyspace-bug-finder-server | polyspace-configure

More About
• “Create Polyspace Analysis Configuration from Build Command” on page 2-2

 Modularize Polyspace Analysis by Using Build Command

2-11

Offload Polyspace Analysis to Remote
Servers from Desktop

• “Send Polyspace Analysis from Desktop to Remote Servers” on page 3-2
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts” on page 3-6

3

Send Polyspace Analysis from Desktop to Remote Servers

In this section...
“Client-Server Workflow for Running Analysis” on page 3-2
“Prerequisites” on page 3-3
“Offload Analysis in Polyspace User Interface” on page 3-3

You can perform a Polyspace analysis locally on your desktop or offload the analysis to one or more
dedicated servers. You offload a Polyspace analysis from a Polyspace desktop product such as
Polyspace Bug Finder but the analysis runs on the server using a Polyspace server product such as
Polyspace Bug Finder Server.

This topic shows how to send a Polyspace analysis from the user interface of the Polyspace desktop
products.

• To offload an analysis with scripts, see “Send Polyspace Analysis from Desktop to Remote Servers
Using Scripts” on page 3-6.

• For a simple tutorial that walks through all the steps for offloading a Polyspace analysis, see “Send
Bug Finder Analysis from Desktop to Locally Hosted Server”. In the tutorial, the same computer
acts as the client and the server.

Client-Server Workflow for Running Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a server. The
client-server workflow happens in three steps. All three steps can be performed on the same
computer or three different computers.

1 Client node: You specify Polyspace analysis options and start the analysis on the client desktop.
The initial phase of analysis up to compilation runs on the desktop. After compilation, the
analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer that acts as
the client node.

2 Head node: The server consists of a head node and several worker nodes. The head node uses a
job scheduler to manage submissions from multiple client desktops. The jobs are then distributed
to the worker nodes as they become available.

You require the product MATLAB Parallel Server on the computer that acts as the head node.
3 Worker nodes: When a worker becomes available, the job scheduler assigns the analysis to the

worker. The Polyspace analysis runs on the worker and the results are downloaded back to the
client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker nodes. You
also require the Polyspace server products, Polyspace Bug Finder Server and/or Polyspace Code
Prover Server, to run the analysis.

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-2

Prerequisites
Before offloading an analysis from the user interface of the Polyspace desktop products, you must set
up your project’s source files, analysis options, and remote analysis settings. If you have not done so,
for more information on:

• How to add source files, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Bug Finder).

• How to set up communication between client and server, see “Install Products for Submitting
Polyspace Analysis from Desktops to Remote Server”.

Once you have set up a Polyspace project and established communicated between a desktop and a
remote server, you are ready to offload a Polyspace analysis.

Offload Analysis in Polyspace User Interface
To start a remote analysis:

1 Select a project to analyze.
2 On the Configuration pane, select Run Settings.

Select Run Bug Finder analysis on a remote cluster and/or Run Code Prover analysis on a
remote cluster.

 Send Polyspace Analysis from Desktop to Remote Servers

3-3

3 If you want to store your results in the Polyspace Metrics repository, select Upload results to
Polyspace Metrics.

Otherwise, clear this check box. After analysis, the results are downloaded to the desktop for
review.

4 Start the analysis. For instance, to start a Bug Finder analysis, click the Run Bug Finder button.

The compilation part of the analysis takes place on the desktop product. After compilation, the
analysis is offloaded to the server.

5 To monitor the analysis, select Tools > Open Job Monitor. In the Polyspace Job Monitor, follow
your queued job to monitor progress.

Once the analysis is complete, the results are downloaded back to the user interface of the
Polyspace desktop products. You can open the results directly in the user interface. If you
uploaded the results to Polyspace Metrics, you have to explicitly download them from the
Polyspace Metrics interface.

If the analysis stops after compilation and you have to restart the analysis, to avoid restarting
from the compilation phase, use the option -submit-job-from-previous-compilation-
results.

Note If you choose to upload results to Polyspace Metrics, your results are not downloaded
automatically after verification. Use the Polyspace Metrics web dashboard to view the results and
download them to your desktop. For more information, see “View Projects in Polyspace Metrics”
(Polyspace Bug Finder).

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-4

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts” on page 3-6

 Send Polyspace Analysis from Desktop to Remote Servers

3-5

Send Polyspace Analysis from Desktop to Remote Servers
Using Scripts

Instead of running a Polyspace analysis on your local desktop, you can send the analysis to a remote
cluster. You can use a dedicated cluster for running Polyspace to free up memory on your local
desktop.

This topic shows how to use Windows or Linux scripts to send the analysis to a remote cluster and
download the results to your desktop after analysis.

• To offload an analysis from the Polyspace user interface, see “Send Polyspace Analysis from
Desktop to Remote Servers” on page 3-2.

• For a simple tutorial that walks through all the steps for offloading a Polyspace analysis, see “Send
Bug Finder Analysis from Desktop to Locally Hosted Server”. In the tutorial, the same computer
acts as the client and the server.

Client-Server Workflow for Running Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a server. The
client-server workflow happens in three steps. All three steps can be performed on the same
computer or three different computers.

1 Client node: You specify Polyspace analysis options and start the analysis on the client desktop.
The initial phase of analysis up to compilation runs on the desktop. After compilation, the
analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer that acts as
the client node.

2 Head node: The server consists of a head node and several worker nodes. The head node uses a
job scheduler to manage submissions from multiple client desktops. The jobs are then distributed
to the worker nodes as they become available.

You require the product MATLAB Parallel Server on the computer that acts as the head node.
3 Worker nodes: When a worker becomes available, the job scheduler assigns the analysis to the

worker. The Polyspace analysis runs on the worker and the results are downloaded back to the
client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker nodes. You
also require the Polyspace server products, Polyspace Bug Finder Server and/or Polyspace Code
Prover Server to run the analysis.

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-6

Prerequisites
Before you run a remote analysis by using scripts, you must set up communication between a desktop
and a remote server. See “Install Products for Submitting Polyspace Analysis from Desktops to
Remote Server”.

Run Remote Analysis
To run a remote analysis, use this command:

polyspaceroot\polyspace\bin\polyspace-bug-finder
 -batch -scheduler NodeHost|MJSName@NodeHost [options] [-mjs-username name]

where:

• polyspaceroot is the installation folder of Polyspace desktop products, for instance,
C:\Program Files\Polyspace\R2021a.

• NodeHost is the name of the computer that hosts the head node of the MATLAB Parallel Server
cluster.

MJSName is the name of the MATLAB Job Scheduler on the head node host.

If you set up communications with a cluster from the Polyspace user interface, you can determine
NodeHost and MJSName from the user interface. Select Metrics > Metrics and Remote Server
Settings. Open the MATLAB Parallel Server Admin Center. Under MATLAB Job Scheduler, see
the Name and Hostname columns for MJSName and NodeHost.

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

3-7

If you use the startjobmanager command to start the MATLAB Job Scheduler, MJSName is the
argument of the option -name. For details, see “Configure Advanced Options for MATLAB Job
Scheduler Integration” (MATLAB Parallel Server).

• options are the analysis options. These options are the same as that of a local analysis. For
instance, you can use these options:

• -sources-list-file: Specify a text file with one source file name per line.
• -options-file: Specify a text file with one option per line.
• -results-dir: Specify a download folder for storing results after analysis.

For the full list of options, see “Analysis Options in Polyspace Bug Finder Server”. Alternatively,
you can:

• Start an analysis in the user interface and stop after compilation. You can obtain the text files
and scripts for running the analysis at the command line. See “Configure Polyspace Analysis
Options in User Interface and Generate Scripts” on page 1-14.

• Enter polyspace-bug-finder -h. The list of available options with a brief description are
displayed.

• Place your cursor over each option on the Configuration pane in the Polyspace user interface.
Click the More Help button for information on the option syntax and when the option is
required.

• name is the username required for job submissions using MATLAB Parallel Server. hese
credentials are required only if you use a security level of 1 or higher for MATLAB Parallel Server
submissions. See “Set MATLAB Job Scheduler Cluster Security” (MATLAB Parallel Server).

The analysis executes locally on your desktop up to the end of the compilation phase. After
compilation, the software submits the analysis job to the cluster and provides a job ID. You can also
read the ID from the file ID.txt in the results folder. To monitor your analysis, use the polyspace-
jobs-manager command with the job ID.

If the analysis stops after compilation and you have to restart the analysis, to avoid rerunning the
compilation phase, use the option -submit-job-from-previous-compilation-results.

Manage Remote Analysis
To manage multiple remote analyses, use the option -batch. For instance:

polyspaceroot\polyspace\bin\polyspace-jobs-manager action
 -scheduler schedulerName

See also Run Bug Finder or Code Prover analysis on a remote cluster (-batch).
Here:

• polyspaceroot is your MATLAB installation folder.
• schedulerName is one of the following:

• Name of the computer that hosts the head node of your MATLAB Parallel Server cluster
(NodeHost).

• Name of the MATLAB Job Scheduler on the head node host (MJSName@NodeHost).

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-8

• Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Discover Clusters and Use Cluster Profiles” (Parallel
Computing Toolbox)

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler specified in
the Polyspace preferences. To see the scheduler name, select Tools > Preferences. On the
Server Configuration tab, see the Job scheduler host name.

• action refers to the possible action commands to manage jobs on the scheduler:

• listjobs:

Generate a list of Polyspace jobs on the scheduler. For each job, the software produces this
information:

• ID — Verification or analysis identifier.
• AUTHOR — Name of user that submitted job.
• APPLICATION — Name of Polyspace product, for example, Polyspace Code Prover or

Polyspace Bug Finder.
• LOCAL_RESULTS_DIR — Results folder on local computer, specified through the Tools >

Preferences > Server Configuration tab.
• WORKER — Local computer from which job was submitted.
• STATUS — Status of job, for example, running and completed.
• DATE — Date on which job was submitted.
• LANG — Language of submitted source code.

• download -job ID -results-folder FolderPath:

Download results of analysis with specified ID to folder specified by FolderPath.

When the analysis job is queued on the server, the command polyspace-bug-finder returns
a job id. In addition, a file ID.txt in the results folder contains the job ID in this format:

job_id;server_name:project_name version_number

For instance, 92;localhost:Demo 1.0.

If you do not use the -results-folder option, the software downloads the result to the
folder that you specified when starting analysis, using the -results-dir option.

After downloading results, use the Polyspace user interface to view the results.
• getlog -job ID:

Open log for job with specified ID.
• remove -job ID:

Remove job with specified ID.
• promote -job ID:

Promote job with specified ID in the queue.
• demote -job ID

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

3-9

Demote job with specified ID in the queue.

Sample Scripts for Remote Analysis
In Windows, to avoid typing the commands each time, you can save the commands in a batch file. In
Linux, you can relaunch the analysis by using a shell script. To create a batch file for running
analysis:

1 Save your analysis options in a file listofoptions.txt. See -options-file.
2 Create a file launcher.bat in a text editor like Notepad.

In the file, enter these commands:

echo off
set POLYSPACE_PATH=polyspaceroot\polyspace\bin
set RESULTS_PATH=C:\Results
set OPTIONS_FILE=C:\Options\listofoptions.txt
"%POLYSPACE_PATH%\polyspace-bug-finder.exe" -batch -scheduler localhost
 -results-dir "%RESULTS_PATH%" -options-file "%OPTIONS_FILE%"
pause

polyspaceroot is the Polyspace installation folder. localhost is the name of the computer
that hosts the head node of your MATLAB Parallel Server cluster.

3 Replace the definitions of these variables in the file:

• POLYSPACE_PATH: Enter the actual location of the .exe file.
• RESULTS_PATH: Enter the path to a folder. The files generated during compilation are saved

in the folder.
• OPTIONS_FILE: Enter the path to the file listofoptions.txt.

4 Double-click launcher.bat to run the analysis.

Tip If you run a Polyspace analysis, a Windows .bat or Linux .sh file is generated. The file is in
the .settings subfolder in your results folder. Instead of writing a script from scratch, you can
relaunch the analysis using this file.

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
• “Send Polyspace Analysis from Desktop to Remote Servers” on page 3-2

3 Offload Polyspace Analysis to Remote Servers from Desktop

3-10

Run Polyspace Analysis on Server with
MATLAB Scripts

4

Integrate Polyspace Server Products with MATLAB
You can install Polyspace Bug Finder Server and Polyspace Code Prover Server as standalone
products and analyze C/C++ code.

When installing Polyspace server products and MATLAB, you cannot install MATLAB and Polyspace
server products together in a single run of the installer. First install MATLAB by running the MATLAB
installer. Then install the Polyspace server product in a different root folder by running the installer
separately. For instance, in Windows:

• Your default MATLAB root folder is C:\Program Files\MATLAB\R2021a.
• Your default Polyspace root folder is C:\Program Files\Polyspace Server\R2021a for the

Polyspace server products.

To automate the Polyspace analysis by using MATLAB scripts, integrate the Polyspace server products
and MATLAB by running a post-installation step.

Integrate Polyspace Server Products with MATLAB
You can integrate your Polyspace server product with MATLAB only if both installations are from the
same release. After the integration, you can use all MATLAB functions and classes available for
running Polyspace.

To link your MATLAB and Polyspace installations:

1 Open MATLAB with administrator privileges.
2 At the MATLAB command prompt, enter:

polyspacesetup('install');

By default, Polyspace is installed in the folder C:\Program Files\Polyspace\R2021a. If you
install Polyspace in the default folder, the command integrates Polyspace with MATLAB. If a
Polyspace installation is not detected at the default location, provide the path to the Polyspace
installation folder when prompted. The process might take a few minutes to complete.

To avoid the prompt during installation, enter:

polyspacesetup('install', 'polyspaceFolder', FOLDER, 'silent', true);

3 Restart MATLAB. You can now use all functions and classes available for running Polyspace
server products.

A MATLAB installation can be integrated with only one Polyspace installation. To integrate to a new
Polyspace installation, any previous integration must be removed. To remove the integration between
a Polyspace and MATLAB installation, open MATLAB with administrator privilege and at the MATLAB
command prompt, enter:

polyspacesetup('uninstall')

4 Run Polyspace Analysis on Server with MATLAB Scripts

4-2

Check Integration Between MATLAB and Polyspace
To check if a MATLAB installation is already integrated with a Polyspace installation, open MATLAB
and at the command prompt, enter:

ver

You see the list of products installed. If Polyspace is integrated with MATLAB, you can see the
Polyspace products in the list.

The MATLAB-Polyspace integration adds some Polyspace installation subfolders to the MATLAB
search path. To see which paths were added, enter:

polyspacesetup('showpolyspacefolders')

Run Polyspace Server Products with MATLAB Scripts
In a continuous integration process, you can execute MATLAB scripts that run a Polyspace analysis on
new code submissions and compares the results against predefined criteria. Use these functions/
classes:

• Create a polyspace.Project object to configure Polyspace analysis options, run an analysis and
read results to MATLAB tables. You can use other MATLAB functions for comparing results
against predefined criteria.

To only read existing results without running an analysis, use the
polyspace.BugFinderResults class with the path to a results folder.

• If you want a more granular selection of checkers for:

• Coding rules, create a polyspace.CodingRulesOptions object.
• Bug Finder defects, create a polyspace.DefectsOptions object.

To create a custom target for the analysis and explicitly specify sizes of data types, create a
polyspace.GenericTargetOptions object.

You can also use the polyspaceBugFinderServer function to run the analysis and then read
results with the polyspace.BugFinderResults class. If you use build commands to build your
source code, you can create a Polyspace configuration from the build command using the
polyspaceConfigure function.

See Also

 Integrate Polyspace Server Products with MATLAB

4-3

Configure Target and Compiler Options

5

Specify Target Environment and Compiler Behavior
Before verification, specify your source code language (C or C++), target processor, and the compiler
that you use for building your code. In certain cases, to emulate your compiler behavior, you might
have to specify additional options.

Using your specification, the verification determines the sizes of fundamental types, considers certain
macros as defined, and interprets compiler-specific extensions of the Standard. If the options do not
correspond to your run-time environment, you can encounter:

• Compilation errors
• Verification results that might not apply to your target

If you use a build command such as gmake to build your code and the build command meets certain
restrictions, you can extract the options from the build command. Otherwise, specify the options
explicitly.

Extract Options from Build Command
If you use build automation scripts to build your source code, you can set up a Polyspace project from
your scripts. The options associated with your compiler are specified in that project.

In the Polyspace desktop products, for information on how to trace your build command from the:

• Polyspace user interface, see “Add Source Files for Analysis in Polyspace User Interface”
(Polyspace Bug Finder).

• DOS or UNIX command line, see polyspace-configure.

5 Configure Target and Compiler Options

5-2

• MATLAB command line, see polyspaceConfigure.

In the Polyspace server products, for information on how to trace your build command, see “Create
Polyspace Analysis Configuration from Build Command” on page 2-2.

For Polyspace project creation, your build automation script (makefile) must meet certain
requirements. See “Requirements for Project Creation from Build Systems” on page 5-20.

Specify Options Explicitly
If you cannot trace your build command and therefore manually create a project, you have to specify
the options explicitly.

• In the user interface of the Polyspace desktop products, select a project configuration. On the
Configuration pane, select Target & Compiler. Specify the options.

• At the DOS or UNIX command line, specify flags with the polyspace-bug-finder, polyspace-
code-prover, polyspace-bug-finder-server or polyspace-code-prover-server
command.

• At the MATLAB command line, specify arguments with the polyspaceBugFinder,
polyspaceCodeProver, polyspaceBugFinderServer or polyspaceCodeProverServer
function.

Specify the options in this order.

• Required options:

• Source code language (-lang): If all files have the same extension .c or .cpp, the
verification uses the extension to determine the source code language. Otherwise, explicitly
specify the option.

• Compiler (-compiler): Select the compiler that you use for building your source code. If
you cannot find your compiler, use an option that closely matches your compiler.

• Target processor type (-target): Specify the target processor on which you intend to
execute your code. For some processors, you can change the default specifications. For
instance, for the processor hc08, you can change the size of types double and long double
from 32 to 64 bits.

If you cannot find your target processor, you can create your own target and specify the sizes
of fundamental types, default signedness of char, and endianness of the target machine. See
Generic target options.

• Language-specific options:

• C standard version (-c-version): The default C language standard depends on your
compiler specification. If you do not specify a compiler explicitly, the default analysis uses the
C99 standard. Specify an earlier standard such as C90 or a later standard such as C11.

• C++ standard version (-cpp-version): The default C++ language standard depends on
your compiler specification. If you do not specify a compiler explicitly, the default analysis uses
the C++03 standard. Specify later standards such as C++11 or C++14.

• Compiler-specific options:

Whether these options are available or not depends on your specification for Compiler (-
compiler). For instance, if you select a visual compiler, the option Pack alignment value

 Specify Target Environment and Compiler Behavior

5-3

(-pack-alignment-value) is available. Using the option, you emulate the compiler option /Zp
that you use in Visual Studio.

For all compiler-specific options, see “Target and Compiler”.
• Advanced options:

Using these options, you can modify the verification results. For instance, if you use the option
Division round down (-div-round-down), the verification considers that quotients from
division or modulus of negative numbers are rounded down. Use these options only if you use
similar options when compiling your code.

For all advanced options, see “Target and Compiler”.
• Compiler header files:

If you specify the diab, tasking or greenhills compiler, you must specify the path to your
compiler header files. See “Provide Standard Library Headers for Polyspace Analysis” on page 5-
19.

If you still see compilation errors after running analysis, you might have to specify other options:

• Define macros: Sometimes, a compilation error occurs because the analysis considers a macro as
undefined. Explicitly define these macros. See Preprocessor definitions (-D).

• Specify include files: Sometimes, a compilation error occurs because your compiler defines
standard library functions differently from Polyspace and you do not provide your compiler include
files. Explicitly specify the path to your compiler include files. See “Provide Standard Library
Headers for Polyspace Analysis” on page 5-19.

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) | Compiler
(-compiler) | Preprocessor definitions (-D) | Source code language (-lang) |
Target processor type (-target)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-5
• “Provide Standard Library Headers for Polyspace Analysis” on page 5-19

5 Configure Target and Compiler Options

5-4

C/C++ Language Standard Used in Polyspace Analysis
The Polyspace analysis adheres to a specific language standard for code compilation. The language
standard, along with your compiler specification, defines the language elements that you can use in
your code. For instance, if the Polyspace analysis uses the C99 standard, C11 features such as use of
the thread support library from threads.h causes compilation errors.

Supported Language Standards
The Polyspace analysis supports these standards:

• C: C90, C99, C11

The default standard depends on your compiler specification. If you do not specify a compiler
explicitly, the default analysis uses the C99 standard. To change the language standard, use the
option C standard version (-c-version).

• C++: C++03, C++11, C++14

The default standard depends on your compiler specification. If you do not specify a compiler
explicitly, the default analysis uses the C++03 standard. To change the language standard, use the
option C++ standard version (-cpp-version).

Default Language Standard
The default language standard depends on your specification for the option Compiler (-
compiler).

Compiler C Standard C++ Standard
generic C99 C++03
gnu3.4, gnu4.6, gnu4.7,
gnu4.8, gnu4.9

C99 C++03

gnu5.x C11 C++03
gnu6.x C11 C++14
gnu7.x C11 C++14
gnu8.x C11 C++14
clang3.x C99 C++03

The analysis accepts some C+
+11 extensions.

clang4.x C99 C++03

The analysis accepts C++14
extensions.

clang5.x C99 C++03

The analysis accepts C++14
extensions.

 C/C++ Language Standard Used in Polyspace Analysis

5-5

Compiler C Standard C++ Standard
visual9.0, visual10.0,
visual11.0, visual12.0

C99 C++03

visual14.0 C99 C++14
visual15.x C99 C++14
visual16.x C99 C++14
keil C99 C++03
iar C99 C++03
armcc C99 C++03
armclang C11 C++03
codewarrior C99 C++03
cosmic C99 Not supported
diab C99 C++03
greenhills C99 C++03
iar-ew C99 C++03
microchip C99 Not supported
renesas C99 C++03
tasking C99 C++03
ti C99 C++03

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) | Compiler
(-compiler)

More About
• “C11 Language Elements Supported in Polyspace” on page 5-7
• “C++11 Language Elements Supported in Polyspace” on page 5-9
• “C++14 Language Elements Supported in Polyspace” on page 5-12
• “C++17 Language Elements Supported in Polyspace” on page 5-15

5 Configure Target and Compiler Options

5-6

C11 Language Elements Supported in Polyspace
This table provides a partial list of C language elements that have been introduced since C11 and the
corresponding Polyspace support. If your code contains non-supported constructions, Polyspace
reports a compilation error.

C11 Language Element Supported
alignas and alignof convenience macros Yes
aligned_alloc function Yes
noreturn convenience macros Yes
Generic selection Yes
Thread support library (threads.h) Yes
Atomic operations library (stdatomic.h) Yes
Atomic types with _Atomic Yes.

If you use the Clang compiler, see limitations
book for limitations on atomic data types. See
“Limitations of Polyspace Verification” (Polyspace
Code Prover).

UTF-16 and UTF-32 character utilities Yes
Bound-checking interfaces or alternative versions
of standard library functions that check for buffer
overflows (Annex K of C11)

For instance, strcpy_s is an alternative to
strcpy that checks for certain errors in the
string copy.

No.

Polyspace checks for certain run-time errors in
use of standard library functions. The checking
does not extend to these alternatives.

Anonymous structures and unions Yes
Static assert declaration Yes
Features related to error handling such as
errno_t and rsize_t typedef-s

No.

If you see compilation errors from use of these
typedef-s, explicitly specify the path to your
compiler headers. See “Provide Standard Library
Headers for Polyspace Analysis” on page 5-19.

quick_exit and at_quick_exit Yes.

In Bug Finder, functions registered with
at_quick_exit appear as uncalled.

CMPLX, CMPLXF and CMPLXL macros Yes

See Also
C standard version (-c-version)

 C11 Language Elements Supported in Polyspace

5-7

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-5

5 Configure Target and Compiler Options

5-8

C++11 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced since C++11
and its corresponding Polyspace support. If your code contains nonsupported constructions,
Polyspace reports a compilation error.

C++11 Std Ref Description Supported
C++2011-DR226 Default template arguments for function templates Yes
C++2011-DR339 Solving the SFINAE problem for expressions Yes
C++2011-N1610 Initialization of class objects by rvalues Yes
C++2011-N1653 C99 preprocessor Yes
C++2011-N1720 Static assertions Yes
C++2011-N1737 Multi-declarator auto Yes
C++2011-N1757 Right angle brackets Yes
C++2011-N1791 Extended friend declarations No
C++2011-N1811 long long Yes
C++2011-N1984 auto-typed variables Yes
C++2011-N1986 Delegating constructors Yes
C++2011-N1987 Extern templates Yes
C++2011-N1988 Extended integral types Yes
C++2011-N2118 Rvalue references Yes
C++2011-N2170 Universal character name literals Yes
C++2011-N2179 Concurrency: Propagating exceptions No
C++2011-N2235 Generalized constant expressions Yes
C++2011-N2239 Concurrency: Sequence points No new syntax/

keyword is
introduced and
therefore does not
affect Polyspace
support for C++11.

C++2011-N2242 Variadic templates Yes
C++2011-N2249 New character types Yes
C++2011-N2253 Extending sizeof Yes
C++2011-N2258 Template aliases Yes
C++2011-N2340 __func__ predefined identifier Yes
C++2011-N2341 Alignment support Yes
C++2011-N2342 Standard Layout Types Yes
C++2011-N2343 Declared type of an expression Yes
C++2011-N2346 Defaulted and deleted functions Yes
C++2011-N2347 Strongly typed enums Yes

 C++11 Language Elements Supported in Polyspace

5-9

C++11 Std Ref Description Supported
C++2011-N2427 Concurrency: Atomic operations No
C++2011-N2429 Concurrency: Memory model No new syntax/

keyword is
introduced and
therefore does not
affect Polyspace
support for C++11.

C++2011-N2431 Null pointer constant Yes
C++2011-N2437 Explicit conversion operators Yes
C++2011-N2439 Rvalue references for *this Yes
C++2011-N2440 Concurrency: Abandoning a process and at_quick_exit Yes
C++2011-N2442 Unicode string literals Yes
C++2011-N2442 Raw string literals Yes
C++2011-N2535 Inline namespaces Yes
C++2011-N2540 Inheriting constructors Yes
C++2011-N2541 New function declarator syntax Yes
C++2011-N2544 Unrestricted unions Yes
C++2011-N2546 Removal of auto as a storage-class specifier Yes
C++2011-N2547 Concurrency: Allow atomics use in signal handlers No
C++2011-N2555 Extending variadic template template parameters Yes
C++2011-N2657 Local and unnamed types as template arguments Yes
C++2011-N2659 Concurrency: Thread-local storage No
C++2011-N2660 Concurrency: Dynamic initialization and destruction with

concurrency
Yes

C++2011-N2664 Concurrency: Data-dependency ordering: atomics and
memory model

No

C++2011-N2672 Initializer lists Yes
C++2011-N2748 Concurrency: Strong Compare and Exchange No
C++2011-N2752 Concurrency: Bidirectional Fences No
C++2011-N2756 Nonstatic data member initializers Yes
C++2011-N2761 Generalized attributes Yes
C++2011-N2764 Forward declarations for enums Yes
C++2011-N2765 User-defined literals Yes
C++2011-N2927 New wording for C++0x lambdas Yes
C++2011-N2928 Explicit virtual overrides Yes
C++2011-N2930 Range-based for Yes
C++2011-N3050 Allowing move constructors to throw [noexcept] Yes
C++2011-N3053 Defining move special member functions Yes

5 Configure Target and Compiler Options

5-10

C++11 Std Ref Description Supported
C++2011-N3276 decltype and call expressions Yes

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-5
• “C++14 Language Elements Supported in Polyspace” on page 5-12
• “C++17 Language Elements Supported in Polyspace” on page 5-15

 C++11 Language Elements Supported in Polyspace

5-11

C++14 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced since C++14
and its corresponding Polyspace support. If your code contains nonsupported constructions,
Polyspace reports a compilation error.

C++14 Std Ref Description Supported
C++2014-N3323 Implicit conversion from class

type in certain contexts such as
delete or switch statement.

This C++14 feature allows
implicit conversion from class
type in certain contexts. No new
syntax/keyword is introduced
and therefore does not affect
Polyspace support for C++14.

C++2014-N3462 More SFINAE-friendly
std::result_of

Yes

C++2014-N3472 Binary literals, for instance,
0b100.

Yes

C++2014-N3545 operator() in
integral_constant template
of constexpr type

Yes

C++2014-N3637 Relation between std::async
and destructor of std::future

No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3638 Automatic deduction of return
type for functions where an
explicit return type is not
specified

Yes.

In some cases, Code Prover can
show compilation errors.

C++2014-N3642 Suffixes for user-defined literals
indicating time (h, min, s, ms,
us, ns) and strings (s)

Yes

C++2014-N3648 Initialization of captured
members in lambda functions

Yes.

In some cases, during
initialization, Code Prover can
call the corresponding
constructors more number of
times than necessary.

C++2014-N3649 Generic (polymorphic) lambda
expressions:

• Using auto type-specifier for
parameter and return type

• Conversion of generic
capture-less lambda
expressions to pointer-to-
function.

Yes

5 Configure Target and Compiler Options

5-12

C++14 Std Ref Description Supported
C++2014-N3651 Variable templates Yes
C++2014-N3652 Declarations, conditions and

loops in constexpr functions.
Yes

C++2014-N3653 Initialization of aggregate
classes with fewer initializers
than members

For instance, this initialization
has fewer initializers than
members. The member c is
initialized with the value 0 and d
is initialized with the value s.
struct S {
 int a;
 const char* b;
 int c;
 int d = b[a];};
S ss = { 1, "asdf" };

Yes

C++2014-N3654 std::quoted Yes
C++2014-N3656 std::make_unique Yes
C++2014-N3658 std::integer_sequence Yes
C++2014-N3658 std::shared_lock No.

The use of std::shared_lock
does not cause compilation
errors but the construct is not
semantically supported.

C++2014-N3664 Calling new and delete
operators in batches.

This C++14 feature clarifies
how successive calls to the new
operator are implemented. No
new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3668 std::exchange Partially supported.
C++2014-N3670 Using std::get with a data

type to get one element in an
std::tuple (provided there is
only one element of the type in
the tuple)

Yes

C++2014-N3671 Overloads for std::equal,
std::mismatch and
std::is_permutation
function templates that accept
two separate ranges

Yes

C++2014-N3733 Removal of std::gets from
<cstdio>

Yes

 C++14 Language Elements Supported in Polyspace

5-13

C++14 Std Ref Description Supported
C++2014-N3776 Wording change for destructor

of std::future
No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3779 std::complex literals
representing pure imaginary
numbers with suffix i, if or il

Yes

C++2014-N3781 Use of single quotation mark as
digit separator, for instance,
1'000.

Yes

C++2014-N3786 Prohibiting "out of thin air'
results in C++14

No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3910 Synchronizing behavior of signal
handlers

No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3924 Discouraging use of rand() No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3927 Lock-free executions No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-5
• “C++11 Language Elements Supported in Polyspace” on page 5-9
• “C++17 Language Elements Supported in Polyspace” on page 5-15

5 Configure Target and Compiler Options

5-14

C++17 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced since C++17
and its corresponding Polyspace support. If your code contains nonsupported constructions,
Polyspace reports a compilation error.

C++17 Std Ref Description Supported
C++2017-N3921 std::string-view: Observe the content of an

std::string object without owning the resource
Yes

C++2017-N3922 • When used in copy-list-initialization, auto
deduces the type to be an
std::initializer_list if the elements of the
initializer list have an identical type. Otherwise,
the auto deduction is ill-formed.

• When using direct list-initialization with a braced
initializer list containing a single element, auto
deduces the type from that element.

• When using direct list-initialization with a braced
initializer list containing more than a single
element, auto deduction of type is ill-formed.

Yes

C++2017-N3928 The static_assert declaration no longer requires
a second argument. Invoking static_assert with
no message is now allowed: static_assert(N >
0);

Yes

C++2017-N4051 C++ has templates that are not class templates,
such as a template that takes templates as an
argument. Previously, declaring such template-
template parameters required the use of the class
keyword. In C++17, you can use typename when
declaring template-template parameters , such as:

template <template <typename> typename Tmpl> struct X;

Yes

C++2017-N4086 Starting in C++17, trigraphs are no longer
supported.

No

C++2017-N4230 Starting in C++17, use a qualified name in a
namespace definition to define several nested
namespaces at once. For instance, these code
snippets are equivalent:

• namespace base::derived{
//..
}

• namespace {
 namespace derived{
 //...
 }
}

Yes

 C++17 Language Elements Supported in Polyspace

5-15

C++17 Std Ref Description Supported
C++2017-N4259 The function std::uncaught_exceptions is

introduced in C++17, which returns the number of
exceptions in your code that are not handled. The
function std:uncaught_exception, which returns
a Boolean value, is deprecated.

Yes

C++2017-N4266 Starting in C++17, namespaces and enumerators
can be annotated with attributes to allows clearer
communication of developer intention.

Yes

C++2017-N4267 Starting in C++17, the prefix u8 is supported. This
prefix creates a UTF-8 character literal. The value of
the UTF-8 character literal is equal to its ISO 10646
code point value if the code point value is in the C0
Controls and Basic Latin Unicode block.

Yes

C++2017-N4268 Allow constant evaluation of nontype template
arguments.

Yes

C++2017-N4295 Allow fold expressions Yes
C++2017-N4508 Allow untimed std::shared_mutex The use of

std::shared_mutex does
not cause a compilation
error. Polyspace does not
support sharing mutex
objects by using
std::shared_mutex.

C++2017-
P0001R1

Remove the use of the register keyword Yes

C++2017-
P0002R1

Remove operator++(bool) Yes

C++2017-
P0003R5

Remove deprecated exception specifications by
using throw(<>)

Bug Finder removes the
exception specification
specified by using throw()
statements. Code Prover
raises a compilation error
when throw() statements
are present in C++17 code.

C++2017-
P0012R1

Make exception specifications part of the type
system

Yes

C++2017-
P0017R1

Aggregate initialization of classes with base classes Yes

C++2017-
P0018R3

Allow capturing the pointer *this in Lambda
expressions

Yes

C++2017-
P0024R2

Standardization of the C++ technical specification
for Extension for Parallelism

Polyspace supports this
feature when you use the
Visual 15.x and Intel C++
18.0 compilers.

5 Configure Target and Compiler Options

5-16

C++17 Std Ref Description Supported
C++2017-
P002842

Using attribute namespaces without repetition Yes

C++2017-
P0035R4

Dynamic memory allocation for over-aligned data Yes

C++2017-
P0036R0

Unary fold expressions and empty parameter packs Yes

C++2017-
P0061R1

Use of __has_include in preprocessor conditionals Yes

C++2017-
P0067R5

Elementary string conversions No

C++2017-
P0083R3

Splicing maps and sets Polyspace supports this
feature when the compiler
you use also supports this
feature. For instance,
Polyspace supports this
feature when you use g++
as compiler.

C++2017-
P0088R3

std::variant Partially supported.

C++2017-
P0091R3

Template argument deduction for class templates Partially supported.

C++2017-
P0127R2

Non-type template parameters that have auto type Yes

C++2017-
P0135R1

Guaranteed copy elision Partially supported.

C++2017-
P0136R1

New specification for inheriting constructors No

C++2017-
P0137R1

Replacement of class objects containing reference
members

Yes

C++2017-
P0138R2

Direct-list-initialization of enumerations Yes

C++2017-
P0145R3

Stricter expression evaluation order No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++17.

C++2017-
P0154R1

Hardware interference size Supported with Visual
Studio Compiler

C++2017-
P0170R1

constexpr Lambda expressions Partially supported

C++2017-
P018R0

Differing begin and end types in range-based for
loops

Yes

C++2017-
P0188R1

[[fallthrough]] attribute Yes

 C++17 Language Elements Supported in Polyspace

5-17

C++17 Std Ref Description Supported
C++2017-
P0189R1

[[nodiscard]] attribute Yes

C++2017-
P0195R2

Pack expansions in using-declarations Yes

C++2017-
P0212R1

[[maybe_unused]] attribute Yes

C++2017-
P0217R3

Structured Bindings Polyspace does not support
binding by using an rvalue.

C++2017-
P0218R1

std::filesystem No

C++2017-
P0220R1

std::any Yes

C++2017-
P0220R1

std::optional Bug Finder supports the
syntax. The semantics are
partially supported. Code
Prover does not support this
feature.

C++2017-
P0226R1

Mathematical special functions No

C++2017-
P0245R1

Hexadecimal floating-point literals Yes

C++2017-
P0283R2

Ignore unknown attributes Yes

C++2017-
P0292R2

constexpr if statements Yes

C++2017-
P0298R3

std::byte Yes

C++2017-
P0305R1

init-statements for if and switch Yes

C++2017-
P0386R2

Inline variables No

C++2017-
P0522R0

Invoke partial ordering to determine when a
template template-argument is a valid match for a
template-parameter

Partially supported

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 5-5
• “C++11 Language Elements Supported in Polyspace” on page 5-9
• “C++14 Language Elements Supported in Polyspace” on page 5-12

5 Configure Target and Compiler Options

5-18

Provide Standard Library Headers for Polyspace Analysis
Before Polyspace analyzes the code for bugs and run-time errors, it compiles your code. Even if the
code compiles with your compiler, you can see compilation errors with Polyspace. If the error comes
from a standard library function, it usually indicates that Polyspace is not using your compiler
headers. To work around the errors, provide the path to your compiler headers.

This topic shows how to locate the standard library headers from your compiler. The code examples
cause a compilation error that shows the location of the headers.

• To locate the folder containing your C compiler system headers, compile this C code by using your
compilation toolchain:

float fopen(float f);
#include <stdio.h>

The code does not compile because the fopen declaration conflicts with the declaration inside
stdio.h. The compilation error shows the location of your compiler implementation of stdio.h.
Your C standard library headers are all likely to be in that folder.

• To locate the folder containing your C++ compiler system headers, compile this C++ code by
using your compilation toolchain:

namespace std {
 float cin;
}
#include <iostream>

The code does not compile because the cin declaration conflicts with the declaration inside
iostream.h. The compilation error shows the location of your compiler implementation of
iostream.h. Your C++ standard library headers are all likely to be in that folder.

After you locate the path to your compiler's header files, specify the path for the Polyspace analysis.
For C++ code, specify the paths to both your C and C++ headers.

• In the user interface (Polyspace desktop products), add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface” (Polyspace
Bug Finder).

• At the command line, use the flag -I with the polyspace-bug-finder, polyspace-code-
prover, polyspace-bug-finder-server or polyspace-code-prover-server command..

For more information, see -I.

See Also

More About
• “Errors from Conflicts with Polyspace Header Files” on page 11-35

 Provide Standard Library Headers for Polyspace Analysis

5-19

Requirements for Project Creation from Build Systems
For automatic project creation from build systems, your build commands or makefiles must meet
certain requirements.

Compiler Requirements
• Your compiler must be called locally.

If you use a compiler cache such as ccache or a distributed build system such as distmake, the
software cannot trace your build. You must deactivate them.

• Your compiler must perform a clean build.

If your compiler performs only an incremental build, use appropriate options to build all your
source files. For example, if you use gmake, append the -B or -W makefileName option to force a
clean build. For the list of options allowed with the GNU® make, see make options.

• Your compiler configuration must be available to Polyspace. The compilers currently supported
include the following:

• arm Keil
• Clang
• Wind River® Diab
• GNU C/C++
• IAR Embedded Workbench
• Green Hills®

• NXP CodeWarrior®

• Renesas®

• Altium® Tasking
• Texas Instruments™
• tcc - Tiny C Compiler
• Microsoft Visual C++®

If your compiler configuration is not available to Polyspace:

• Write a compiler configuration file for your compiler in a specific format. For more information,
see “Compiler Not Supported for Project Creation from Build Systems” on page 11-7.

• Contact MathWorks Technical Support. For more information, see “Contact Technical Support
About Issues with Running Polyspace” on page 11-4.

• If you build your code in Cygwin™, you must be using version 2.x or 3.x of Cygwin for Polyspace
project creation from your build system (for instance, Cygwin version 2.10 or 3.0).

• With the TASKING compiler, if you use an alternative sfr file with extension .asfr, Polyspace
might not be able to locate your file. If you encounter an error, explicitly #include your .asfr
file in the preprocessed code using the option Include (-include).

Typically, you use the statement #include __SFRFILE__(__CPU__) along with the compiler
option --alternative-sfr-file to specify an alternative sfr file. The path to the file is
typically Tasking_C166_INSTALL_DIR\include\sfr\regCPUNAME.asfr. For instance, if your

5 Configure Target and Compiler Options

5-20

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html
https://www.mathworks.com/support/?s_tid=gn_supp

TASKING compiler is installed in C:\Program Files\Tasking\C166-VX_v4.0r1\ and you use
the CPU-related flag -Cxc2287m_104f or --cpu=xc2287m_104f, the path is C:\Program
Files\Tasking\C166-VX_v4.0r1\include\sfr\regxc2287m.asfr.

Build Command Requirements
• Your build command must run to completion without any user interaction.
• In Linux, only UNIX shell (sh) commands must be used. If your build uses advanced commands

such as commands supported only by bash, tcsh or zsh, Polyspace cannot trace your build.

In Windows, only DOS commands must be used. If your build uses advanced commands such as
commands supported only by PowerShell or Cygwin, Polyspace cannot trace your build. To see if
Polyspace supports your build command, run the command from cmd.exe in Windows. For more
information, see “Check if Polyspace Supports Build Scripts” on page 11-14.

• If you use statically linked libraries, Polyspace cannot trace your build. In Linux, you can install
the full Linux Standard Base (LSB) package to allow dynamic linking. For example, on Debian®

systems, install LSB with the command apt-get install lsb.
• Your build command must not use aliases.

The alias command is used in Linux to create an alternate name for commands. If your build
command uses those alternate names, Polyspace cannot recognize them.

• Your build process must not use the LD_PRELOAD mechanism.
• Your build command must be executable completely on the current machine and must not require

privileges of another user.

If your build uses sudo to change user privileges or ssh to remotely log in to another machine,
Polyspace cannot trace your build.

• If your build command uses redirection with the > or | character, the redirection occurs after
Polyspace traces the command. Therefore, Polyspace does not handle the redirection.

For example, if your command occurs as

command1 | command2

And you enter

polyspace-configure command1 | command2

When tracing the build, Polyspace traces the first command only.
• If the System Integrity Protection (SIP) feature is active on the operating system macOS El

Capitan (10.11) or a later macOS version, Polyspace cannot trace your build command. Before
tracing your build command, disable the SIP feature. You can reenable this feature after tracing
the build command.

Similar considerations apply to other security applications such as security-related products from
CylanceProtect, Avecto and Tanium.

• If your computer hibernates during the build process, Polyspace might not be able to trace your
build.

• When creating projects from build commands in the Polyspace User Interface, you might
encounter errors such as libcurl.so.4: version 'CURL_OPENSSL_3' not found. In such

 Requirements for Project Creation from Build Systems

5-21

cases, create the Polyspace project by using the command polyspace-configure in the system
command line interface, using the build command as the argument. See polyspace-configure.

Note Your environment variables are preserved when Polyspace traces your build command.

See Also
polyspace-configure

Related Examples
• “Create Polyspace Analysis Configuration from Build Command” on page 2-2

5 Configure Target and Compiler Options

5-22

Supported Keil or IAR Language Extensions
Polyspace analysis can interpret a subset of common C/C++ language constructs and extended
keywords by default. For compiler-specific keywords, you must specify your choice of compiler. If you
specify keil or iar for Compiler (-compiler), the Polyspace verification allows language
extensions specific to the Keil or IAR compilers.

Special Function Register Data Type
Embedded control applications frequently read and write port data, set timer registers, and read
input captures. To deal with these requirements without using assembly language, some
microprocessor compilers define special data types such as sfr and sbit. Typical declarations are:

sfr A0 = 0x80;
sfr A1 = 0x81;
sfr ADCUP = 0xDE;
sbit EI = 0x80;

The declarations reside in header files such as regxx.h for the basic 80Cxxx micro processor. The
declarations customize the compiler to the target processor.

You access a register or a port by using the sfr and sbit data as follows. However, these data types
are not part of the C99 Standard.

int status,P0;

void main (void) {
 ADCUP = 0x08; /* Write data to register */
 A1 = 0xFF; /* Write data to Port */
 status = P0; /* Read data from Port */
 EI = 1; /* Set a bit (enable all interrupts) */
}

To analyze this type of code, use these options:

• Compiler (-compiler): Specify keil or iar.
• Sfr type support (-sfr-types): Specify the data type and size in bits.

For example, depending on how you define the sbit data type, you use these options:

• sbit ADST = ADCUP^7;

Use options: -compiler keil -sfr-type sfr=8
• sbit ADST = ADCUP.7;

Use options: -compiler iar -sfr-type sfr=8

The analysis then supports the Keil or IAR language extensions even if some structures, keywords,
and syntax are not part of the C99 standard.

 Supported Keil or IAR Language Extensions

5-23

Keywords Removed During Preprocessing
Once you specify the Keil or IAR compiler, the analysis recognizes compiler-specific keywords in your
code. If a keyword is not relevant for the analysis, it is removed from the source code during
preprocessing.

If you disable the keyword and use it as an identifier instead, you can encounter a compilation error
when you compile your code with Polyspace. See “Errors Related to Keil or IAR Compiler” on page
11-28.

These keywords are removed during preprocessing:

• Keil: bdata, far, idata, huge, sdata
• IAR: saddr, reentrant, reentrant_idata, non_banked, plm, bdata, idata, pdata, code,

xdata, xhuge, interrupt, __interrupt, __intrinsic

The data keyword is not removed.

5 Configure Target and Compiler Options

5-24

Remove or Replace Keywords Before Compilation
The Polyspace compiler strictly follows the ANSI® C99 Standard (ISO/IEC 9899:1999). If your
compiler allows deviation from the Standard, the Polyspace compilation using default options cannot
emulate your compiler. For instance, your compiler can allow certain non-ANSI keyword, which
Polyspace does not recognize by default.

To emulate your compiler closely, you specify the “Target and Compiler” options. If you still get
compilation errors from unrecognized keywords, you can remove or replace them only for the
purposes of verification. The option Preprocessor definitions (-D) allows you to make simple
substitutions. For complex substitutions, for instance to remove a group of space-separated keywords
such as a function attribute, use the option Command/script to apply to preprocessed
files (-post-preprocessing-command).

Remove Unrecognized Keywords
You can remove unsupported keywords from your code for the purposes of analysis. For instance,
follow these steps to remove the far and 0x keyword from your code (0x precedes an absolute
address).

1 Save the following template as C:\Polyspace\myTpl.pl.

Content of myTpl.pl
#!/usr/bin/perl

##
Post Processing template script
#
##
Usage from GUI:
#
1) Linux: /usr/bin/perl PostProcessingTemplate.pl
2) Windows: polyspaceroot\sys\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl
#
##

$version = 0.1;

$INFILE = STDIN;
$OUTFILE = STDOUT;

while (<$INFILE>)
{

 # Remove far keyword
 s/far//;

 # Remove "@ 0xFE1" address constructs
 s/\@\s0x[A-F0-9]*//g;

 # Remove "@0xFE1" address constructs
 s/\@0x[A-F0-9]*//g;

 # Remove "@ ((unsigned)&LATD*8)+2" type constructs
 s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

 # DON'T DELETE LINE BELOW: Print the current processed line
 print $OUTFILE $_;
}

For reference, see a summary of Perl regular expressions.

Perl Regular Expressions
###
Metacharacter What it matches

 Remove or Replace Keywords Before Compilation

5-25

###
Single Characters
. Any character except newline
[a-z0-9] Any single character in the set
[^a-z0-9] Any character not in set
\d A digit same as
\D A non digit same as [^0-9]
\w An Alphanumeric (word) character
\W Non Alphanumeric (non-word) character
#
Whitespace Characters
\s Whitespace character
\S Non-whitespace character
\n newline
\r return
\t tab
\f formfeed
\b backspace
#
Anchored Characters
\B word boundary when no inside []
\B non-word boundary
^ Matches to beginning of line
$ Matches to end of line
#
Repeated Characters
x? 0 or 1 occurrence of x
x* 0 or more x's
x+ 1 or more x's
x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively
to|be|great One of "to", "be" or "great"
#
Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses
\2 or $2 First second of parentheses
\3 or $3 First third of parentheses
##
Back referencing
#
e.g. swap first two words around on a line
red cat -> cat red
s/(\w+) (\w+)/$2 $1/;
#
##

2 On the Configuration pane, select Environment Settings.
3

To the right of Command/script to apply to preprocessed files, click .
4 Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply to

preprocessed files field.

5 Configure Target and Compiler Options

5-26

Remove Unrecognized Function Attributes
You can remove unsupported function attributes from your code for the purposes of analysis.

If you run verification on this code specifying a generic compiler, you can see compilation errors from
the noreturn attribute. The code compiles using a GNU compiler.

void fatal () __attribute__ ((noreturn));

void fatal (/* ... */)
{
 /* ... */ /* Print error message. */ /* ... */
 exit (1);
}

If the software does not recognize an attribute and the attribute does not affect the code analysis, you
can remove it from your code for the purposes of verification. For instance, you can use this Perl
script to remove the noreturn attribute.

while ($line = <STDIN>)
{

__attribute__ ((noreturn))

 # Remove far keyword
 $line =~ s/__attribute__\ \(\(noreturn\)\)//g;

 # Print the current processed line to STDOUT
 print $line;
}

Specify the script using the option Command/script to apply to preprocessed files (-
post-preprocessing-command).

See Also
Polyspace Analysis Options
Command/script to apply to preprocessed files (-post-preprocessing-command) |
Preprocessor definitions (-D)

Related Examples
• “Troubleshoot Compilation Errors”

 Remove or Replace Keywords Before Compilation

5-27

Gather Compilation Options Efficiently
Polyspace verification can sometimes stop in the compilation or linking phase due to the following
reasons:

• The Polyspace compiler strictly follows a C or C++ Standard (depending on your choice of
compiler). See “C/C++ Language Standard Used in Polyspace Analysis” on page 5-5. If your
compiler allows deviation from the Standard, the Polyspace compilation using default options
cannot emulate your compiler.

• Your compiler declares standard library functions with argument or return types different from
the standard types. Unless you also provide the function definition, for efficient verification,
Polyspace uses its own definitions of standard library functions, which have the usual prototype.
The mismatch in types causes a linking error.

You can easily work around the compilation and standard library function errors. To work around the
errors, you typically specify certain analysis options. In some cases, you might have to add a few lines
to your code. For instance:

• To emulate your compiler behavior more closely, you specify the “Target and Compiler” options. If
you still face compilation errors, you might have to remove or replace certain unrecognized
keywords using the option Preprocessor definitions (-D). However, the option allows only
simple substitution of a string with another string. For more complex replacements, you might
have to add #define statements to your code.

• To avoid errors from stubbing standard library functions, you might have to #define certain
Polyspace-specific macros so that Polyspace does not use its own definition of standard library
functions.

Instead of adding these modifications to your original code, create a single polyspace.h file that
contains all modifications. Use the option Include (-include) to force inclusion of the
polyspace.h file in all source files under verification.

Benefits of this approach include:

• The error detection is much faster since it will be detected during compilation rather than in the
link or subsequent phases.

• There will be no need to modify original source files.
• The file is automatically included as the very first file in the original .c files.
• The file is reusable for other projects developed under the same environment.

Example 5.1. Example

This is an example of a file that can be used with the option Include (-include).

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another_file.h"

// Workarounds for compilation errors
#define far
#define at(x)

5 Configure Target and Compiler Options

5-28

// Workarounds for errors due to redefining standard library functions

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the
 //automatic stubbing of std functions
#define __polyspace_no_sscanf
#define __polyspace_no_fgetc
void sscanf(int, char, char, char, char, char);
void fgetc(void);

See Also

More About
• “Troubleshoot Compilation Errors”

 Gather Compilation Options Efficiently

5-29

Configure Inputs and Stubbing Options

6

Specify External Constraints
This example shows how to specify constraints (also known as data range specifications or DRS) on
variables in your code. Polyspace uses the code that you provide to make assumptions about items
such as variable ranges and allowed buffer size for pointers. Sometimes the assumptions are broader
than what you expect because:

• You have not provided the complete code. For example, you did not provide some of the function
definitions.

• Some of the information about variables is available only at run time. For example, some variables
in your code obtain values from the user at run time.

Because of these broad assumptions:

• Code Prover can consider more execution paths than those paths that occur at run time. If an
operation fails along one of the execution paths, Polyspace places an orange check on the
operation. If that execution path comes from an assumption that is too broad, the orange check
might indicate a false positive.

• Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on global
variables, function inputs, and return values and modifiable arguments of stubbed functions. You save
the constraints as an XML file to use them for subsequent analyses. If your source code changes, you
can update the previous constraints. You do not have to create a new constraint template.

Note In Bug Finder, you can only constrain global variables. You cannot constrain function inputs or
return values of stubbed functions.

Create Constraint Template
User Interface (Desktop Products Only)

1 Open the project configuration. On the Configuration pane, select Inputs & Stubbing.
2 To the right of Constraint setup, click the Edit button to open the Constraint Specification

window.

6 Configure Inputs and Stubbing Options

6-2

3 In the Constraint Specification dialog box, create a blank constraint template. The template
contains a list of all variables on which you can provide constraints. To create a new template,

click . The software compiles your project and creates a template. The new template
is stored in a file Module_number_Project_name_drs_template.xml in your project folder.

4 Specify your constraints and save the template as an XML file. For more information, see
“External Constraints for Polyspace Analysis” on page 6-7.

5 Click OK.

You see the full path to the template XML file in the Constraint setup field. If you run an
analysis, Polyspace uses this template for extracting variable constraints.

Command Line

Use the option Constraint setup (-data-range-specifications) to specify the constraints
XML file.

To specify constraints in the XML file:

1 First, create a blank XML template. The template lists all global variables, function inputs and
modifiable arguments and return values of stubbed functions without specifying any constraints
on them.

To create a blank template, run an analysis only up to the compilation phase. In Bug Finder,
disable checking of defects. Use the option Find defects (-checkers). In Code Prover,
check for source compliance only. Use the argument compile for the option Verification
level (-to). After the analysis, a blank template XML drs-template.xml is created in the
results folder.

For C++ projects, to create a blank constraints template, you have to use the argument cpp-
normalize for the option Verification level (-to).

2 Edit the XML file to specify your constraints.

For examples, see:

 Specify External Constraints

6-3

• “Constrain Global Variable Range” (Polyspace Code Prover Server)
• “Constrain Function Inputs” (Polyspace Code Prover Server)

Create Constraint Template from Code Prover Analysis Results
You can constrain variable ranges based on their expected range in real-world applications. For
instance, if a variable represents vehicle speed, you can set a maximum possible value. You can also
constrain variable ranges only if they cause too many orange checks from overapproximation.

A Code Prover analysis shows all global variables, function inputs and stubbed functions that lead to
orange checks from possible overapproximation. You can constrain only these variables for a more
precise analysis.

1 Open Code Prover results in the Polyspace user interface or Polyspace Access web interface.
2 Open the Orange Sources pane. Do one of the following:

•
Select an orange check. If the software can trace an orange check to a root cause, a icon
appears on the Result Details pane. Click this icon to open the Orange Sources pane.

• In the Polyspace user interface, select Window > Show/Hide View > Orange Sources. In
the Polyspace Access web interface, select Layout > Show/Hide View > Orange Sources.

You see the full list of variables (function inputs or return values of stubbed functions) that can
cause orange checks. Constrain the ranges of these variables.

In the details for individual orange checks, you often see a message similar to this:

If appropriate, applying DRS to stubbed function random_float in example.c
line 44 may remove this orange.

The message is an indication that the stubbed function is a possible source of the orange check. You
can apply external constraints on the function to enforce more precise assumptions and possibly
remove the orange check (in case it came from the broader assumptions).

Update Existing Template
With new code submissions, you might have to specify additional constraints. You can update an
existing template to add global variables, function inputs and stubbed functions that come from the
new code submissions.

Additionally, if you remove some variables or functions from your code, constraints on them are not
applicable any more. Instead of regenerating a constraint template and respecifying the constraints,
you can update an existing template and remove the variables that are not present in your code.

User Interface (Desktop Products Only)

1 On the Configuration pane, select Inputs & Stubbing.

6 Configure Inputs and Stubbing Options

6-4

2 Open the existing template in one of the following ways:

• In the Constraint setup field, enter the path to the template XML file. Click Edit.
•

Click Edit. In the Constraint Specification dialog box, click the icon to navigate to your
template file.

3 Click Update.

a Variables that are no longer present in your source code appear under the Non Applicable
node. To remove an entry under the Non Applicable node or the node itself, right-click and
select Remove This Node.

b Specify your new constraints for any of the other variables.

Command Line

In a continuous integration workflow, you can use the constraints XML file from the previous run. If
new code submissions require additional constraints:

1 Specify constraints on variables from new code submissions in a constraints XML file. See Create
Constraint Template: Command Line on page 6-3.

2 Merge the constraints XML file with the new constraints and the constraints XML file from the
previous run.

Specify Constraints in Code
Specifying constraints outside your code allows for more precise analysis. However, you must use the
code within the specified constraints because the constraints are outside your code. Otherwise, the
results might not apply. For example, if you use function inputs outside your specified range, a run-
time error can occur on an operation even though checks on the operation are green.

To specify constraints inside your code, you can use:

• Appropriate error handling tests in your code.

Polyspace checks to determine if the errors can actually occur. If they do not occur, the test blocks
appear as Unreachable code.

• The assert macro. For example, to constrain a variable var in the range [0,10], you can use
assert(var >= 0 && var <=10);.

Polyspace checks your assert statements to see if the condition can be false. Following the
assert statement, Polyspace considers that the assert condition is true. Using assert
statements, you can constrain your variables for the remaining code in the same scope. For
examples, see Assertion (Polyspace Bug Finder).

See Also
Constraint setup (-data-range-specifications)

 Specify External Constraints

6-5

https://www.cplusplus.com/reference/cassert/assert/

Related Examples
• “External Constraints for Polyspace Analysis” on page 6-7
• “Constrain Global Variable Range” (Polyspace Code Prover Server)
• “Constrain Function Inputs” (Polyspace Code Prover Server)
• “XML File Format for Constraints” on page 6-19

6 Configure Inputs and Stubbing Options

6-6

External Constraints for Polyspace Analysis
For a more precise analysis with Polyspace, you can specify external constraints on:

• Global Variables.
• User-defined Functions.

Constraints on user-defined functions do not apply to a Bug Finder analysis.
• Stubbed Functions.

Constraints on stubbed functions do not apply to a Bug Finder analysis.

For more information, see “Specify External Constraints” on page 6-2. For a partial list of limitations,
see “Constraint Specification Limitations” on page 6-11.

In the user interface of the Polyspace desktop products, you can specify the constraints through a
Constraint Specification window. The constraints are saved in an XML file that you can reuse for
other projects.

This table explains the various columns in the Constraint Specification window. If you directly edit
the constraint XML file to specify a constraint (for instance, in the Polyspace Server products), this
table also shows the correspondence between columns in the user interface and entries in the XML
file. The XML entry highlighted in bold appears in the corresponding column of the Constraint
Specification window.

 External Constraints for Polyspace Analysis

6-7

Column Settings
Name Displays the list of variables and functions in your Project for which you can

specify data ranges.

This Column displays three expandable menu items:

• Globals – Displays global variables in the project.
• User defined functions – Displays user-defined functions in the project.

Expand a function name to see its inputs.
• Stubbed functions – Displays a list of stub functions in the project. Expand

a function name to see the inputs and return values.
XML File Entry:

<function name = "funcName" ...>

<scalar name = "arg1" ...>

<pointer name = "arg2" ...>

File Displays the name of the source file containing the variable or function.
XML File Entry:

<file name = "C:\Project1\Sources\file.c" ...>

Attributes Displays information about the variable or function.

For example, static variables display static. Uncalled functions display
unused.
XML File Entry:

<function name="funcName" attributes="unused" ...>

Data Type Displays the variable type.
XML File Entry:

<scalar name="arg1" complete_type="int32" ...>

Main Generator
Called

Applicable only for user-defined functions.

Specifies whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call this function, depending on
the value of the -functions-called-in-loop (C) or -main-
generator-calls (C++) parameter.

• NO – Main generator will not call this function.
• YES – Main generator will call this function.
XML File Entry:

<function name="funcName" main_generator_called="MAIN_GENERATOR" ...>

6 Configure Inputs and Stubbing Options

6-8

Column Settings
Init Mode Specifies how the software assigns a range to the variable:

• MAIN GENERATOR – Variable range is assigned depending on the settings of
the main generator options -main-generator-writes-variables and -
no-def-init-glob.

• IGNORE – Variable is not assigned to any range, even if a range is specified.
• INIT – Variable is assigned to the specified range only at initialization, and

keeps the range until first write.
• PERMANENT – Variable is permanently assigned to the specified range. If the

variable is assigned outside this range during the program, no warning is
provided. Use the globalassert mode if you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN GENERATOR, IGNORE, or
INIT mode.

• MAIN GENERATOR – Pointer follows the options of the main generator.
• IGNORE – Pointer is not initialized
• INIT – Specify if the pointer is NULL, and how the pointed object is

allocated (Initialize Pointer and Init Allocated options).
XML File Entry:

<scalar name="arg1" init_mode="INIT" ...>

Init Range Specifies the minimum and maximum values for the variable.

You can use the keywords min and max to denote the minimum and maximum
values of the variable type. For example, for the type long, min and max
correspond to -2^31 and 2^31-1 respectively.

You can also use hexadecimal values. For example: 0x12..0x100

For enum variables, you cannot specify ranges directly using the enumerator
constants. Instead use the values represented by the constants.

For enum variables, you can also use the keywords enum_min and enum_max
to denote the minimum and maximum values that the variable can take. For
example, for an enum variable of the type defined below, enum_min is 0 and
enum_max is 5:

enum week{ sunday, monday=0, tuesday,
 wednesday, thursday, friday, saturday};

XML File Entry:

<scalar name="arg1" init_range="-1..0"...>

 External Constraints for Polyspace Analysis

6-9

Column Settings
Initialize Pointer Applicable only to pointers. Enabled only when you specify Init Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a NULL pointer (or not).
• Not Null – The pointer is never initialized as a null pointer.
• Null – The pointer is initialized as NULL.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 6-11.
XML File Entry:

<pointer name="arg1" initialize_pointer="Not NULL"...>

Init Allocated Applicable only to pointers. Enabled only when you specify Init Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by the main generator.
• None – Pointed object is not written.
• SINGLE – Write the pointed object or the first element of an array. (This

setting is useful for stubbed function parameters.)
• MULTI – All objects (or array elements) are initialized.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 6-11.
XML File Entry:

<pointer name="arg1" init_pointed="MAIN_GENERATOR"...>

6 Configure Inputs and Stubbing Options

6-10

Column Settings
Allocated
Objects

Applicable only to pointers.

Specifies how many objects are pointed to by the pointer (the pointed object is
considered as an array).

The Init Allocated parameter specifies how many allocated objects are
actually initialized. For instance, consider this code:

void func(int *ptr) {
 assert(ptr[0]==1);
 assert(ptr[1]==1);
}

If you specify these constraints:

• ptr has Init Allocated set to MULTI and # Allocated Objects set to 2,
• *ptr has Init Range set to 1..1,

both assertions are green. However, if you specify these constraints:

• ptr has Init Allocated set to SINGLE
• *ptr has Init Range set to 1..1,

the second assertion is orange. Only the first object that ptr points to
initialized to 1. Objects beyond the first can be potentially full range.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 6-11.
XML File Entry:

<pointer name="arg1" number_allocated="10"...>

Global Assert Specifies whether to perform an assert check on the variable at global
initialization, and after each assignment.
XML File Entry:

<scalar name="glob" global_assert="YES"...>

Global Assert
Range

Specifies the minimum and maximum values for the range you want to check.
XML File Entry:

<scalar name="glob" assert_range="0..200"...>

Comment Remarks that you enter, for example, justification for your DRS values.
XML File Entry:

<scalar name="glob" comment="Speed Range"...>

Constraint Specification Limitations
You cannot specify these constraints:

 External Constraints for Polyspace Analysis

6-11

• C++ Pointers cannot be constrained:

In C++, you cannot constrain pointer arguments of functions. Functions that have pointer
arguments only do not appear in the constraint specification interface.

Because of polymorphism, a C++ pointer can point to objects of multiple classes in a class
hierarchy and can require invoking different constructors. The pre-analysis for constraint
specification cannot determine which object type to constrain or which constructor to call.

• Constraints cannot be relations:

You cannot specify a constraint that relates the return value of a function to its inputs. You can
only specify a constant range for the constraints.

• Multiple ranges not possible:

You cannot specify multiple ranges for a constraint. For instance, you cannot specify that a
function argument has either the value -1 or a value in the range [1,100]. Instead, specify the
range [-1,100] or perform two separate analyses, once with the value -1 and once with the range
[1,100].

See Also

More About
• “Specify External Constraints” on page 6-2

6 Configure Inputs and Stubbing Options

6-12

Constrain Global Variable Range
You can impose constraints (also known as data range specifications or DRS) on the range of a global
variable and check with Code Prover whether write operations on the variable violate the constraint.
For the general workflow, see “Specify External Constraints” on page 6-2.

User Interface (Desktop Products Only)
To constrain a global variable range and also check for violation of the constraint:

1
In your project configuration, select Inputs & Stubbing. Click the button next to the
Constraint setup field.

2
In the Constraint Specification window, click .

Under the Global Variables node, you see a list of global variables.

3 For the global variable that you want to constrain:

• From the drop-down list in the Global Assert column, select YES.
• In the Global Assert Range column, enter the range in the format min..max. min is the

minimum value and max the maximum value for the global variable.
4

To save your specifications, click the button.

In Save a Constraint File window, save your entries as an xml file.
5 Run a verification and open the results.

For every write operation on the global variable, you see a green, orange, or red Correctness
condition check. If the check is:

 Constrain Global Variable Range

6-13

• Green, the variable is within the range that you specified.
• Orange, the variable can be outside the range that you specified.
• Red, the variable is outside the range that you specified.

When two or more tasks write to the same global variable, the Correctness condition check
can appear orange on all write operations to the variable even when only one write operation
takes the variable outside the Global Assert range.

Command Line
Use the option Constraint setup (-data-range-specifications) with an XML file
specifying your constraint.

For instance, for an analysis with Polyspace Code Prover Server, specify the option as follows:

polyspace-code-prover-server -sources filename
 -data-range-specifications "C:\Polyspace\drs_project1.xml"

Create a blank constraint XML template as described in “Specify External Constraints” on page 6-2.
In the XML file, locate and constrain the global variables. XML tags for global variables appear
directly within the file tag without an enclosing function tag. For instance, in this constraint
XML, PowerLevel and SHR are global variables:

<file name="\\\\home\\Polyspace_Workspace\\Examples\\Code_Prover_Example
 \\sources\\tasks1.c">
 <scalar name="PowerLevel" line="26" .. global_assert="YES" assert_range="0..10"/>
 <scalar name="SHR" line="30" ... global_assert="NO" assert_range="" />
 <function name="Tserver" line="73" .../>
 <function name="initregulate" line="47" .../>
 <function name="orderregulate" line="35" ...>
 <scalar name="return" ... global_assert="unsupported" assert_range="unsupported" />
 </function>
 <function name="proc1" line="101" .../>
</file>

To specify a constraint on a global variable and check during a Code Prover analysis if the constraint
is violated:

1 Set the global_assert attribute of the variable's scalar tag to YES.
2 Set the assert_range attribute to a range in the form min..max, for instance, 0..10.

In the preceding example, the variable PowerLevel is constrained this way.

See Also
Polyspace Analysis Options
Constraint setup (-data-range-specifications)

Polyspace Results
Correctness condition

6 Configure Inputs and Stubbing Options

6-14

More About
• “Specify External Constraints” on page 6-2
• “External Constraints for Polyspace Analysis” on page 6-7
• “Constrain Function Inputs” (Polyspace Code Prover Server)

 Constrain Global Variable Range

6-15

Constrain Function Inputs
For a more precise Code Prover analysis, you can specify constraints (also known as data range
specifications or DRS) on function inputs. Code Prover checks your function definition for run-time
errors with respect to the constrained inputs. For the general workflow, see “Specify External
Constraints” on page 6-2.

For instance, for a function defined as follows, you can specify that the argument val has values in
the range [1..10]. You can also specify that the argument ptr points to a 3-element array where
each element is initialized:

int func(int val, int* ptr) {
 .
 .
}

User Interface (Desktop Products Only)
To specify constraints on function inputs:

1
In your project configuration, select Inputs & Stubbing. Click the button for
Constraint setup.

2
In the Constraint Specification window, click .

Under the User Defined Functions node, you see a list of functions whose inputs can be
constrained.

3 Expand the node for each function.

You see each function input on a separate row. The inputs have the syntax
function_name.arg1, function_name.arg2, etc.

4 Specify your constraints on one or more of the function inputs. For more information, see
“External Constraints for Polyspace Analysis” on page 6-7.

For example, in the preceding code:

• To constrain val to the range [1..10], select INIT for Init Mode and enter 1..10 for Init
Range.

• To specify that ptr points to a 3-element array where each element is initialized, select
MULTI for Init Allocated and enter 3 for # Allocated Objects.

6 Configure Inputs and Stubbing Options

6-16

5 Run verification and open the results. On the Source pane, place your cursor on the function
inputs.

The tooltips display the constraints. For example, in the preceding code, the tooltip displays that
val has values in 1..10.

Command Line
Use the option Constraint setup (-data-range-specifications) with an XML file
specifying your constraint.

For instance, for an analysis with Polyspace Code Prover Server, specify the option as follows:

polyspace-code-prover-server -sources filename
 -data-range-specifications "C:\Polyspace\drs_project1.xml"

Create a blank constraint XML template as described in “Specify External Constraints” on page 6-2.
In the XML file, locate and constrain the function inputs. The function inputs appear as a scalar or
pointer tag in a function tag. The inputs are named as arg1, arg2 and so on. For instance, for
the preceding code, the XML structure for the inputs of func appear as follows:

<function name="func" line="1" attributes="unused"
 main_generator_called="MAIN_GENERATOR" comment="">
 <scalar name="arg1" line="1" base_type="int32"
 complete_type="int32" init_mode="INIT" init_range="1..10" />
 <pointer name="arg2" line="1" complete_type="int32 *"
 init_mode="INIT" initialize_pointer="Not NULL" number_allocated="3"
 init_pointed="MULTI">
 <scalar line="1" base_type="int32" complete_type="int32"
 init_mode="MAIN_GENERATOR" init_range=""/>
 </pointer>
 <scalar name="return" line="1" base_type="int32" complete_type="int32"
 init_mode="disabled" init_range="disabled"/>
</function>

To specify a constraint on a function input, set the attributes init_mode and init_range for scalar
variables, and init_pointed and number_allocated for pointer variables.

• To constrain val to the range [1..10], set the init_mode attribute of the tag with name arg1
to INIT and init_range to 1..10.

 Constrain Function Inputs

6-17

• To specify that ptr points to a 3-element array where each element is initialized, set the
init_mode attribute of the tag with name arg2 to INIT, init_pointed to MULTI and
number_allocated to 3.

See Also
Constraint setup (-data-range-specifications)

More About
• “Specify External Constraints” on page 6-2
• “External Constraints for Polyspace Analysis” on page 6-7
• “Constrain Global Variable Range” (Polyspace Code Prover Server)

6 Configure Inputs and Stubbing Options

6-18

XML File Format for Constraints
For a more precise Polyspace analysis, you can specify constraints on global variables, function inputs
and stubbed functions. You can specify the constraints in the user interface of the Polyspace desktop
products or at the command line as an XML file. For the general workflow, see “Specify External
Constraints” on page 6-2.

This topic describes details of the constraint XML file schema. You typically require this information
only if you create a constraint XML from scratch. If you run a verification once, the software
automatically generates a template constraint file drs-template.xml in your results folder. Instead
of creating a constraint XML file from scratch, it is easier to edit this template XML file to specify
your constraints. For some examples, see:

• “Constrain Global Variable Range” (Polyspace Code Prover Server)
• “Constrain Function Inputs” (Polyspace Code Prover Server)

For another explanation of what the XML tags mean, see “External Constraints for Polyspace
Analysis” on page 6-7.

You can also see the information in this topic and the underlying XML schema in polyspaceroot
\polyspace\drs. Here, polyspaceroot is the Polyspace installation folder, for instance,
C:\Program Files\Polyspace\R2019a.

Syntax Description — XML Elements
The constraints file contains the following XML elements:

• <global> element — Declares the global scope, and is the root element of the XML file.
• <file> element — Declares a file scope. Must be enclosed in the <global> element. May

enclose any variable or function declaration. Static variables must be enclosed in a file element to
avoid conflicts.

• <scalar> element— Declares an integer or a floating point variable. May be enclosed in any
recognized element, but cannot enclose any element. Sets init/permanent/global asserts on
variables.

• <pointer> element — Declares a pointer variable. May enclose any other variable declarations
(including itself), to define the pointed objects. Specifies what value is written into pointer (NULL
or not), how many objects are allocated and how the pointed objects are initialized.

• <array> element — Declares an array variable. May enclose any other variable definition
(including itself), to define the members of the array.

• <struct> element — Declares a structure variable or object (instance of class). May enclose any
other variable definition (including itself), to define the fields of the structure.

• <function> element — Declares a function or class method scope. May enclose any variable
definition, to define the arguments and the return value of the function. Arguments should be
named arg1, arg2, …argn and the return value should be called return.

The following notes apply to specific fields in each XML element:

• (*) — Fields used only by the GUI. These fields are not mandatory for verification to accept the
ranges. The field line contains the line number where the variable is declared in the source code,
complete_type contains a string with the complete variable type, and base_type is used by the

 XML File Format for Constraints

6-19

GUI to compute the min and max values. The field comment is used to add information about any
node.

• (**) — The field name is mandatory for scope elements <file> and <function> (except for
function pointers). For other elements, the name must be specified when declaring a root symbol
or a struct field.

• (***) — If more than one attribute applies to the variable, the attributes must be separated by a
space. Only the static attribute is mandatory, to avoid conflicts between static variables having the
same name. An attribute can be defined multiple times without impact.

• (****) — This element is used only by the GUI, to determine which init modes are allowed for
the current element (according to its type). The value works as a mask, where the following values
are added to specify which modes are allowed:

• 1: The mode “NO” is allowed.
• 2 : The mode “INIT” is allowed.
• 4: The mode “PERMANENT” is allowed.
• 8: The mode “MAIN_GENERATOR” is allowed.

For example, the value “10” means that modes “INIT” and “MAIN_GENERATOR” are allowed. To
see how this value is computed, refer to “Valid Modes and Default Values” on page 6-23.

• (*****) — A sub-element of a pointer (i.e. a pointed object) will be taken into account only if
init_pointed is equal to SINGLE, MULTI, SINGLE_CERTAIN_WRITE or
MULTI_CERTAIN_WRITE.

• (******) — SINGLE_CERTAIN_WRITE or MULTI_CERTAIN_WRITE are available for parameters
and return values of stubbed functions only if they are pointers. If the parameter or return value is
a structure and the structure has a pointer field, they are also available for the pointer field.

<file> Element

Field Syntax
name filepath_or_filename
comment string

<scalar> Element

Field Syntax
name (**) name
line (*) line
base_type (*) intx

uintx
floatx

Attributes (***) volatile
extern
static
const

complete_type (*) type

6 Configure Inputs and Stubbing Options

6-20

Field Syntax
init_mode MAIN_GENERATOR

IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)
init_range range

disabled
unsupported

global_ assert YES
NO
disabled
unsupported

assert_range range
disabled
unsupported

comment(*) string

<pointer> Element

Field Syntax
Name (**) name
line (*) line
Attributes (***) volatile

extern
static
const

complete_type (*) type
init_mode MAIN_GENERATOR

IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)
initialize_ pointer May be:

NULL
Not NULL
NULL

number_ allocated single value
disabled
unsupported

 XML File Format for Constraints

6-21

Field Syntax
init_pointed (******) MAIN_GENERATOR

NONE

SINGLE

MULTI

SINGLE_CERTAIN_WRITE

MULTI_CERTAIN_WRITE

disabled
comment string

<array> and <struct> Elements

Field Syntax
Name (**) name
line (*) line
complete_type (*) type
attributes (***) volatile

extern
static
const

comment string

<function> Element

Field Syntax
Name (**) name
line (*) line
main_generator_called MAIN_GENERATOR

YES
NO
disabled

attributes (***) static
extern
unused

comment string

6 Configure Inputs and Stubbing Options

6-22

Valid Modes and Default Values
Scope Type Init modes Gassert

mode
Initialize
pointer

Init
allocated

Default

Global
variables

Base
type

Unqualified/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT
PERMANENT

YES
NO

 Main
generator
dependent

Volatile
scalar

PERMANENT disabled PERMANENT
min..max

Extern
scalar

INIT
PERMANENT

YES
NO

 INIT min..max

Struct Struct field Refer to field type
Array Array

element
Refer to element type

Global
variables

Pointer Unqualified/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT

 May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

Main
generator
dependent

Volatile
pointer

un-
supported

 un-
supported

un-
supported

Extern
pointer

IGNORE
INIT

 May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Pointed
volatile
scalar

un-
supported

un-
supported

Pointed
extern
scalar

INIT un-
supported

 INIT
min..max

Pointed
other
scalars

MAIN_
GENERATOR
INIT

un-
supported

 MAIN_
GENERATOR
dependent

Pointed
pointer

MAIN_
GENERATOR
INIT/

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

MAIN_
GENERATOR
dependent

Pointed
function

un-
supported

un-
supported

Function
parameters

Userdef
function

Scalar
parameters

MAIN_
GENERATOR
INIT

un-
supported

 INIT
min..max

 XML File Format for Constraints

6-23

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Pointer
parameters

MAIN_
GENERATOR
INIT

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Other
parameters

Refer to parameter type

Stubbed
function

Scalar
parameter

disabled un-
supported

Pointer
parameters

disabled disabled NONE

SINGLE

MULTI

SINGLE_
CERTAIN_
WRITE

MULTI_
CERTAIN_
WRITE

MULTI

Pointed
parameters

PERMANENT un-
supported

 PERMANENT
min..max

Pointed
const
parameters

disabled un-
supported

Function
return

Userdef
function

Return disabled un-
supported

disabled disabled

Stubbed
function

Scalar
return

PERMANENT un-
supported

 PERMANENT
min..max

Pointer
return

PERMANENT un-
supported

May be
NULL
Not NULL
NULL

NONE

SINGLE

MULTI

SINGLE_
CERTAIN_
WRITE

MULTI_
CERTAIN_
WRITE

PERMANENT
May be NULL
max MULTI

6 Configure Inputs and Stubbing Options

6-24

See Also

More About
• “Specify External Constraints” on page 6-2
• “Constrain Global Variable Range” (Polyspace Code Prover Server)
• “Constrain Function Inputs” (Polyspace Code Prover Server)

 XML File Format for Constraints

6-25

Configure Multitasking Analysis

7

Analyze Multitasking Programs in Polyspace
With Polyspace, you can analyze programs where multiple threads (tasks) run concurrently.

In addition to regular run-time checks, the analysis looks for issues specific to concurrent execution:

• Data races, deadlocks, consecutive or missing locks and unlocks (Bug Finder)
• Unprotected shared variables (Code Prover)

Configure Analysis

7 Configure Multitasking Analysis

7-2

If your code uses multitasking primitives from certain families, for instance, pthread_create for
thread creation:

• In Bug Finder, the analysis detects them and extracts your multitasking model from the code.
• In Code Prover, you must enable this automatic detection explicitly.

See “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 7-5.

Alternatively, define your multitasking model through the analysis options. In the user interface, the
options are on the Multitasking node in the Configuration pane. For more information, see
“Configuring Polyspace Multitasking Analysis Manually” on page 7-16.

Review Analysis Results
Bug Finder

 Analyze Multitasking Programs in Polyspace

7-3

The Bug Finder analysis shows concurrency defects such as data races and deadlocks. See
“Concurrency Defects” (Polyspace Bug Finder Access).

Code Prover

The Code Prover analysis exhaustively checks if shared global variables are protected from
concurrent access. See “Global Variables” (Polyspace Code Prover Access).

Review the results using the message on the Result Details pane. See a visual representation of

conflicting operations using the (graph) icon.

See Also

More About
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 7-5
• “Configuring Polyspace Multitasking Analysis Manually” on page 7-16
• “Protections for Shared Variables in Multitasking Code” on page 7-20

7 Configure Multitasking Analysis

7-4

Auto-Detection of Thread Creation and Critical Section in
Polyspace

With Polyspace, you can analyze programs where multiple threads run concurrently. Polyspace can
analyze your multitasking code for data races, deadlocks and other concurrency defects, if the
analysis is aware of the concurrency model in your code. In some situations, Polyspace can detect
thread creation and critical sections in your code automatically. Bug Finder detects them by default.
In Code Prover, you enable automatic detection using the option Enable automatic concurrency
detection for Code Prover (-enable-concurrency-detection).

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in Polyspace” on
page 7-2.

If your thread creation function is not detected automatically:

• You can also map the function to a thread-creation function that Polyspace can detect
automatically. Use the option -code-behavior-specifications.

• Otherwise, you must manually model your multitasking threads by using configuration options.
See “Configuring Polyspace Multitasking Analysis Manually” on page 7-16.

Multitasking Routines that Polyspace Can Detect
Polyspace can detect thread creation and critical sections if you use primitives from these groups.
Polyspace recognizes calls to these routines as the creation of a new thread or as the beginning or
end of a critical section.

POSIX

Thread creation: pthread_create

Critical section begins: pthread_mutex_lock

Critical section ends: pthread_mutex_unlock

VxWorks

Thread creation: taskSpawn

Critical section begins: semTake

Critical section ends: semGive

To activate automatic detection of concurrency primitives for VxWorks®, in the user interface of the
Polyspace desktop products, use the VxWorks template. For more information on templates, see
“Create Project Using Configuration Template” (Polyspace Bug Finder). At the command-line, use
these options:

-D1=CPU=I80386
-D2=__GNUC__=2
-D3=__OS_VXWORKS

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-5

Concurrency detection is possible only if the multitasking functions are created from an entry point
named main. If the entry point has a different name, such as vxworks_entry_point, do one of the
following:

• Provide a main function.
• Preprocessor definitions (-D): In preprocessor definitions, set

vxworks_entry_point=main.

Windows

Thread creation: CreateThread

Critical section begins: EnterCriticalSection

Critical section ends: LeaveCriticalSection

μC/OS II

Thread creation: OSTaskCreate

Critical section begins: OSMutexPend

Critical section ends: OSMutexPost

C++11

Thread creation: std::thread::thread

Critical section begins: std::mutex::lock

Critical section ends: std::mutex::unlock

For autodetection of C++11 threads, explicitly specify paths to your compiler header files or use
polyspace-configure.

For instance, if you use std::thread for thread creation, explicitly specify the path to the folder
containing thread.h.

See also “Limitations of Automatic Thread Detection” on page 7-11.

C11

Thread creation: thrd_create

Critical section begins: mtx_lock

Critical section ends: mtx_unlock

7 Configure Multitasking Analysis

7-6

Example of Automatic Thread Detection
The following multitasking code models five philosophers sharing five forks. The example uses
POSIX® thread creation routines and illustrates a classic example of a deadlock. Run Bug Finder on
this code to see the deadlock.

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-7

#include "pthread.h"
#include <stdio.h>
#include <unistd.h>

pthread_mutex_t forks[5];

void* philo1(void* args)
{
 while (1) {
 printf("Philosopher 1 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[0]);
 printf("Philosopher 1 takes left fork\n");
 pthread_mutex_lock(&forks[1]);
 printf("Philosopher 1 takes right fork\n");
 printf("Philosopher 1 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[1]);
 printf("Philosopher 1 puts down right fork\n");
 pthread_mutex_unlock(&forks[0]);
 printf("Philosopher 1 puts down left fork\n");
 }
 return NULL;
}

void* philo2(void* args)
{
 while (1) {
 printf("Philosopher 2 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[1]);
 printf("Philosopher 2 takes left fork\n");
 pthread_mutex_lock(&forks[2]);
 printf("Philosopher 2 takes right fork\n");
 printf("Philosopher 2 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[2]);
 printf("Philosopher 2 puts down right fork\n");
 pthread_mutex_unlock(&forks[1]);
 printf("Philosopher 2 puts down left fork\n");
 }
 return NULL;
}

void* philo3(void* args)
{
 while (1) {
 printf("Philosopher 3 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[2]);
 printf("Philosopher 3 takes left fork\n");
 pthread_mutex_lock(&forks[3]);
 printf("Philosopher 3 takes right fork\n");
 printf("Philosopher 3 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[3]);
 printf("Philosopher 3 puts down right fork\n");

7 Configure Multitasking Analysis

7-8

 pthread_mutex_unlock(&forks[2]);
 printf("Philosopher 3 puts down left fork\n");
 }
 return NULL;
}

void* philo4(void* args)
{
 while (1) {
 printf("Philosopher 4 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[3]);
 printf("Philosopher 4 takes left fork\n");
 pthread_mutex_lock(&forks[4]);
 printf("Philosopher 4 takes right fork\n");
 printf("Philosopher 4 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[4]);
 printf("Philosopher 4 puts down right fork\n");
 pthread_mutex_unlock(&forks[3]);
 printf("Philosopher 4 puts down left fork\n");
 }
 return NULL;
}

void* philo5(void* args)
{
 while (1) {
 printf("Philosopher 5 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[4]);
 printf("Philosopher 5 takes left fork\n");
 pthread_mutex_lock(&forks[0]);
 printf("Philosopher 5 takes right fork\n");
 printf("Philosopher 5 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[0]);
 printf("Philosopher 5 puts down right fork\n");
 pthread_mutex_unlock(&forks[4]);
 printf("Philosopher 5 puts down left fork\n");
 }
 return NULL;
}

int main(void)
{
 pthread_t ph[5];
 pthread_create(&ph[0], NULL, philo1, NULL);
 pthread_create(&ph[1], NULL, philo2, NULL);
 pthread_create(&ph[2], NULL, philo3, NULL);
 pthread_create(&ph[3], NULL, philo4, NULL);
 pthread_create(&ph[4], NULL, philo5, NULL);

 pthread_join(ph[0], NULL);
 pthread_join(ph[1], NULL);
 pthread_join(ph[2], NULL);
 pthread_join(ph[3], NULL);
 pthread_join(ph[4], NULL);

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-9

 return 1;
}

Each philosopher needs two forks to eat, a right and a left fork. The functions philo1, philo2,
philo3, philo4, and philo5 represent the philosophers. Each function requires two
pthread_mutex_t resources, representing the two forks required to eat. All five functions run at the
same time in five concurrent threads.

However, a deadlock occurs in this example. When each philosopher picks up their first fork (each
thread locks one pthread_mutex_t resource), all the forks are being used. So, the philosophers
(threads) wait for their second fork (second pthread_mutex_t resource) to become available.
However, all the forks (resources) are being held by the waiting philosophers (threads), causing a
deadlock.

Naming Convention for Automatically Detected Threads
If you use a function such as pthread_create() to create new threads (tasks), each thread is
associated with an unique identifier. For instance, in this example, two threads are created with
identifiers id1 and id2.

pthread_t* id1, id2;

void main()
{
 pthread_create(id1, NULL, start_routine, NULL);
 pthread_create(id2, NULL, start_routine, NULL);
}

If a data race occurs between the threads, the analysis can detect it. When displaying the results, the
threads are indicated as task_id, where id is the identifier associated with the thread. In the
preceding example, the threads are identified as task_id1 and task_id2.

If a thread identifier is:

• Local to a function, the thread name shows the function.

For instance, the thread created below appears as task_f:id

void f(void)
{
 pthread_t* id;
 pthread_create(id, NULL, start_routine, NULL);
}

• A field of a structure, the thread name shows the structure.

For instance, the thread created below appears as task_a#id

struct {pthread_t* id; int x;} a;
pthread_create(a.id,NULL,start_routine,NULL);

• An array member, the thread name shows the array.

For instance, the thread created below appears as task_tab[1].

7 Configure Multitasking Analysis

7-10

pthread_t* tab[10];
pthread_create(tab[1],NULL,start_routine,NULL);

If you create two threads with distinct thread identifiers, but you use the same local variable name
for the thread identifiers, the name of the second thread is modified to distinguish it from the first
thread. For instance, the threads below appear as task_func:id and task_func:id:1.

void func()
{
 {
 pthread_t id;
 pthread_create(&id, NULL, &task, NULL);

 }
 {
 pthread_t id;
 pthread_create(&id, NULL, &task, NULL);

 }
}

Limitations of Automatic Thread Detection
The multitasking model extracted by Polyspace does not include some features. Polyspace cannot
model:

• Thread priorities and attributes — Ignored by Polyspace.
• Recursive semaphores.
• Unbounded thread identifiers, such as extern pthread_t ids[] — Warning.
• Calls to concurrency primitive through high-order calls — Warning.
• Aliases on thread identifiers — Polyspace over-approximates when the alias is used.
• Termination of threads — Polyspace ignores pthread_join and thrd_join. Polyspace replaces

pthread_exit and thrd_exit by a standard exit.
• (Polyspace Bug Finder only) Creation of multiple threads through multiple calls to the same

function with different pointer arguments.

Example

In this example, Polyspace considers that only one thread is created.

pthread_t id1, id2;
void start(pthread_t* id)
{
 pthread_create(id, NULL, start_routine, NULL);
}
void main()
{
 start(&id1);
 start(&id2);
}

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-11

• (Polyspace Code Prover only) Shared local variables — Only global variables are considered
shared. If a local variable is accessed by multiple threads, the analysis does not take into account
the shared nature of the variable.

Example

In this example, the analysis does not take into account that the local variable x can be accessed
by both task1 and task2 (after the new thread is created).

#include <pthread.h>
#include <stdlib.h>

void* task2(void* args)
{
 int* x = (int*) args;
 *x = 1;
 return (void*)x;
}

void task1()
{
 int x;
 x = 2;
 pthread_t id;
 (void)pthread_create(&id, NULL, task2, (void*) &x);
 /* x (local var) passed to task2 */
 x = 3 ;

 /* Unknown thread priority means x = 1 OR x = 3.*/
 /* However, the analysis considers x = 3 */
 /* Assertion below is green */
 assert(x == 3);
}

int main(void)
{
 task1();
 return 0;
}

• (Polyspace Code Prover only) Shared dynamic memory — Only global variables are considered
shared. If a dynamically allocated memory region is accessed by multiple threads, the analysis
does not take into account its shared nature.

Example

In this example, the analysis does not take into account that lx points to a shared memory region.
The region can be accessed by both task1 and task2 (after the new thread is created). The Code
Prover analysis also reports lx as a non-shared variable.

7 Configure Multitasking Analysis

7-12

#include <pthread.h>
#include <stdlib.h>

static int* lx;

void* task2(void* args)
{
 int* x = (int*) args;
 *x = 1;
 return (void*)x;
}

void task1()
{
 pthread_t id;
 lx = (int*)malloc(sizeof(int));

 if (lx == NULL) exit(1);

 (void)pthread_create(&id, NULL, task2, (void*) lx);

 *lx = 3 ;

 /* Unknown thread priority means *lx = 1 OR *lx = 3.*/
 /* However, the analysis considers *lx = 3 */
 /* Assertion below is green */
 assert(*lx == 3);
}

int main(void)
{
 task1();
 return 0;
}

• Number of tasks created with CreateThread when threadId is set to NULL— When you create
multiple threads that execute the same function, if the last argument of CreateThread is NULL,
Polyspace only detects one instance of this function, or task.

Example

In this example, Polyspace detects only one instance of thread_function1(), but 10 instances
of thread_function2().

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-13

#include <windows.h>

#define MAX_LOOP_THREADS 10

DWORD WINAPI thread_function1(LPVOID data) {}
DWORD WINAPI thread_function2(LPVOID data) {}

HANDLE hds1[MAX_LOOP_THREADS];
HANDLE hds2[MAX_LOOP_THREADS];
DWORD threadId[MAX_LOOP_THREADS];

int main(void)
{
 for (int i = 0; i < MAX_LOOP_THREADS; i++) {

 hds1[i] = CreateThread(NULL, 0, thread_function1, NULL, 0, NULL);
 hds2[i] = CreateThread(NULL, 0, thread_function2, NULL, 0, &threadId[i]);
 }

 return 0;
}

• (C++11 only) If you use lambda expressions as start functions during thread creation, Polyspace
does not detect shared variables in the lambda expressions.

Example

In this example, Polyspace does not detect that the variable y used in the lambda expressions is
shared between two threads. As a result, Bug Finder, for instance, does not show a Data race
defect.

#include <thread>
int y;
int main() {
 std::thread t1([] {y++;});
 std::thread t2([] {y++;});
 t1.join();
 t2.join();
 return 0;
}

• (C++11 threads with Polyspace Code Prover only) String literals as thread function argument —
Code Prover shows a red Illegally dereferenced pointer error if the thread function has an
std::string& parameter and you pass a string literal argument.

Example

In this example, the thread function foo has an std::string& parameter. When starting a
thread, a string literal is passed as argument to this function, which undergoes an implicit
conversion to std::string type. Code Prover loses track of the original string literal in this
conversion. Therefore, a dashed red underline appears on operator<< in the body of foo and a
red Illegally dereferenced pointer check in the body of operator<<.

7 Configure Multitasking Analysis

7-14

#include <iostream>
#include <thread>

using namespace std;

void foo(const std::string& f) {
 std::cout << f;
}

void main() {
 std::thread t1(foo,"foo_arg");
}

To work around this issue, assign the string literal to a temporary variable and pass the variable
as argument to the thread function.

#include <iostream>
#include <thread>

using namespace std;

void foo(const std::string& f) {
 std::cout << f;
}

void main() {
 std::string str = "foo_arg";
 std::thread t1(foo, str);
}

See Also
-code-behavior-specifications | Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection)

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Configuring Polyspace Multitasking Analysis Manually” on page 7-16

 Auto-Detection of Thread Creation and Critical Section in Polyspace

7-15

Configuring Polyspace Multitasking Analysis Manually
With Polyspace, you can analyze programs where multiple threads run concurrently. In some
situations, Polyspace can detect thread creation and critical sections in your code automatically. See
“Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 7-5.

If your code has functions that are intended for concurrent execution, but that cannot be detected
automatically, you must specify them before analysis. If these functions operate on a common
variable, you must also specify protection mechanisms for those operations.

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in Polyspace” on
page 7-2.

Specify Options for Multitasking Analysis
Use these options to specify cyclic tasks, interrupts and protections for shared variables. In the
Polyspace user interface, the options are on the Multitasking node in the Configuration pane.

• Entry points (-entry-points): Specify noncyclic entry point functions.

Do not specify main. Polyspace implicitly considers main as an entry point function.
• Cyclic tasks (-cyclic-tasks): Specify functions that are scheduled at periodic intervals.
• Interrupts (-interrupts): Specify functions that can run asynchronously.
• Disabling all interrupts (-routine-disable-interrupts -routine-enable-

interrupts): Specify functions that disable and reenable interrupts (Bug Finder only).
• Critical section details (-critical-section-begin -critical-section-end):

Specify functions that begin and end critical sections.
• Temporally exclusive tasks (-temporal-exclusions-file): Specify groups of

functions that are temporally exclusive.
• -preemptable-interrupts: Specify functions that have lower priority than interrupts, but

higher priority than tasks (preemptable or non-preemptable).

Only the Bug Finder analysis considers priorities.
• -non-preemptable-tasks: Specify functions that have higher priority than tasks, but lower

priority than interrupts (preemptable or non-preemptable).

Only the Bug Finder analysis considers priorities.

Adapt Code for Code Prover Multitasking Analysis
The multitasking analysis in Code Prover is more exhaustive about finding potentially unprotected
shared variables and therefore follows a strict model.

Tasks and interrupts must be void-void functions.

Functions that you specify as tasks and interrupts must have the prototype:

void func(void);

7 Configure Multitasking Analysis

7-16

Suppose you want to specify a function func that takes int arguments and has return type int:

int func(int);

Define a wrapper void-void function that calls func with a volatile value. Specify this wrapper
function as a task or interrupt.

void func_wrapper() {
 volatile int arg;
 (void)func(arg);
}

You can save the wrapper function definition along with a declaration of the original function in a
separate file and add this file to the analysis.

The main function must end.

Code Prover assumes that the main function ends before all tasks and interrupts begin. If the main
function contains an infinite loop or run-time error, the tasks and interrupts are not analyzed. If you
see that there are no checks in your tasks and interrupts, look for a token underlined in dashed red to
identify the issue in the main function. See “Reasons for Unchecked Code” (Polyspace Code Prover).

Suppose you want to specify the main function as a cyclic task.

void performTask1Cycle(void);
void performTask2Cycle(void);

void main() {
 while(1) {
 performTask1Cycle();
 }
}

void task2() {
 while(1) {
 performTask2Cycle();
 }
}

Replace the definition of main with:

#ifdef POLYSPACE
void main() {
}
void task1() {
 while(1) {
 performTask1Cycle();
 }
}

#else
void main() {
 while(1) {
 performTask1Cycle();
 }
}
#endif

 Configuring Polyspace Multitasking Analysis Manually

7-17

The replacement defines an empty main and places the content of main into another function task1
if a macro POLYSPACE is defined. Define the macro POLYSPACE using the option Preprocessor
definitions (-D) and specify task1 for the option Tasks (-entry-points).

This assumption does not apply to automatically detected threads. For instance, a main function can
create threads using pthread_create.

All tasks and interrupts can interrupt each other.

The Bug Finder analysis considers priorities of tasks. A function that you specify as a task cannot
interrupt a function that you specify as an interrupt because an interrupt has higher priority.

The Code Prover analysis considers that all tasks and interrupts can interrupt each other.

The Polyspace multitasking analysis assumes that a task or interrupt cannot interrupt itself.

All tasks and interrupts can run any number of times in any sequence.

The Code Prover analysis considers that all tasks and interrupts can run any number of times in any
sequence.

Suppose in this example, you specify reset and inc as cyclic tasks. The analysis shows an overflow
on the operation var+=2.

void reset(void) {
 var=0;
}

void inc(void) {
 var+=2;
}

Suppose you want to model a scheduling of tasks such that reset executes after inc has executed
five times. Write a wrapper function that implements this sequence. Specify this new function as a
cyclic task instead of reset and inc.

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 inc();
 inc();
 inc();
 inc();
 inc();
 reset();
 }
 }

Suppose you want to model a scheduling of tasks such that reset executes after inc has executed
zero to five times. Write a wrapper function that implements this sequence. Specify this new function
as a cyclic task instead of reset and inc.

void task() {
 volatile int randomValue = 0;

7 Configure Multitasking Analysis

7-18

 while(randomValue) {
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 reset();
 }
 }

See Also

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 7-5

 Configuring Polyspace Multitasking Analysis Manually

7-19

Protections for Shared Variables in Multitasking Code
If your code is intended for multitasking, tasks in your code can access a common shared variable. To
prevent data races, you can protect read and write operations on the variable. This topic shows the
various protection mechanisms that Polyspace can recognize.

Detect Unprotected Access

You can detect an unprotected access using either Bug Finder or Code Prover. Code Prover is more
exhaustive and proves if a shared variable is protected from concurrent access.

• Bug Finder detects an unprotected access using the result Data race. See Data race.
• Code Prover detects an unprotected access using the result Shared unprotected global

variable. See Potentially unprotected variable.

Suppose you analyze this code, specifying signal_handler_1 and signal_handler_2 as cyclic
tasks. Use the analysis option Cyclic tasks (-cyclic-tasks).

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void signal_handler_1(void) {
 reset();
 inc();
 inc();
}

void signal_handler_2(void) {
 shared_var = INT_MAX;

7 Configure Multitasking Analysis

7-20

}

 void main() {
}

Bug Finder shows a data race on shared_var. Code Prover shows that shared_var is a potentially
unprotected shared variable. Code Prover also shows that the operation shared_var += 2 can
overflow. The overflow occurs if the call to inc in signal_handler_1 immediately follows the
operation shared_var = INT_MAX in signal_handler_2.

Protect Using Critical Sections
One possible solution is to protect operations on shared variables using critical sections.

In the preceding example, modify your code so that operations on shared_var are in the same
critical section. Use the functions take_semaphore and give_semaphore to begin and end the
critical sections. To specify these functions that begin and end critical sections, use the analysis
options Critical section details (-critical-section-begin -critical-section-
end).

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

/* Declare lock and unlock functions */
void take_semaphore(void);
void give_semaphore(void);

void signal_handler_1() {
 /* Begin critical section */
 take_semaphore();
 reset();
 inc();
 inc();
 /* End critical section */
 give_semaphore();

}

void signal_handler_2() {
 /* Begin critical section */
 take_semaphore();
 shared_var = INT_MAX;
 /* End critical section */
 give_semaphore();

}

 Protections for Shared Variables in Multitasking Code

7-21

void main() {
}

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is protected.
You also do not see the overflow because the call to reset() in signal_handler_1 always
precedes calls to inc().

You can also use primitives such as the POSIX functions pthread_mutex_lock and
pthread_mutex_unlock to begin and end critical sections. For a list of primitives that Polyspace
can detect automatically, see “Auto-Detection of Thread Creation and Critical Section in Polyspace” on
page 7-5.

Protect Using Temporally Exclusive Tasks
Another possible solution is to specify a group of tasks as temporally exclusive. Temporally exclusive
tasks cannot interrupt each other.

In the preceding example, specify that signal_handler_1 and signal_handler_2 are temporally
exclusive. Use the option Temporally exclusive tasks (-temporal-exclusions-file).

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is protected.
You also do not see the overflow because the call to reset() in signal_handler_1 always
precedes calls to inc().

Protect Using Priorities
Another possible solution is to specify that one task has higher priority over another.

In the preceding example, specify that signal_handler_1 is an interrupt. Retain
signal_handler_2 as a cyclic task. Use the options Cyclic tasks (-cyclic-tasks) and
Interrupts (-interrupts).

Bug Finder does not show the data race defect anymore. The reason is this:

• The operation shared_var = INT_MAX in signal_handler_2 is atomic. Therefore, the
operations in signal_handler_1 cannot interrupt it.

• The operations in signal_handler_1 cannot be interrupted by the operation in
signal_handler_2 because signal_handler_1 has higher priority.

You can specify up to four different priorities with these options (with highest priority listed first):

• Interrupts (-interrupts)
• -preemptable-interrupts
• -non-preemptable-tasks
• Cyclic tasks (-cyclic-tasks)

A task with higher priority is atomic with respect to a task with lower priority. Note that the checker
Data race including atomic operations ignores the difference in priorities and continues to

7 Configure Multitasking Analysis

7-22

show the data race. See also “Define Preemptable Interrupts and Nonpreemptable Tasks” on page 7-
27.

Code Prover does not consider priorities of tasks. Therefore, Code Prover still shows shared_var as
a potentially unprotected global variable.

Protect By Disabling Interrupts
In a Bug Finder analysis, you can protect a group of operations by disabling all interrupts. Use the
option Disabling all interrupts (-routine-disable-interrupts -routine-enable-
interrupts).

After you call a routine to disable interrupts, all subsequent operations are atomic until you call
another routine to reenable interrupts. The operations are atomic with respect to operations in all
other tasks.

See Also

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Define Atomic Operations in Multitasking Code” on page 7-24

 Protections for Shared Variables in Multitasking Code

7-23

Define Atomic Operations in Multitasking Code
In code with multiple threads, you can use Polyspace Bug Finder to detect data races or Polyspace
Code Prover to list potentially unprotected shared variables.

To determine if a variable shared between multiple threads is protected against concurrent access,
Polyspace checks if the operations on the variable are atomic.

Nonatomic Operations
If an operation is nonatomic, Polyspace considers that the operation involves multiple steps. These
steps do not need to occur together and can be interrupted by operations in other threads.

For instance, consider these two operations in two different threads:

• Thread 1: var++;

This operation is nonatomic because it takes place in three steps: reading var, incrementing var,
and writing back var.

• Thread 2: var = 0;

This operation is atomic if the size of var is less than the word size on the target. See details
below for how Polyspace determines the word size.

If the two operations are not protected (by using, for instance, critical sections), the operation in the
second thread can interrupt the operation in the first thread. If the interruption happens after var is
incremented in the first thread but before the incremented value is written back, you can see
unexpected results.

What Polyspace Considers as Nonatomic
Code Prover considers all operations as nonatomic unless you protect them, for instance, by using
critical sections. See “Define Specific Operations as Atomic” on page 7-25.

Bug Finder considers an operation as nonatomic if it can translate into more than one machine
instruction. For instance:

• The operation can involve both a read and write operation. For example, var++ involves reading
the value of var, increasing the value by one and writing the increased value back to var.

• The operation can involve a 64-bit variable on a 32-bit target. For example, the operation

long long var1, var2;
var1=var2;

involves two steps in copying the content of var2 to var1 on certain targets.

Polyspace uses the Pointer size for your Target processor type as the threshold to compute
atomicity. For instance, if you use i386 as your Target processor type, the Pointer size is 32
bits and Long long and Double sizes are both 64 bits. Therefore, Polyspace considers copying
one long long or double variable to another as nonatomic.

7 Configure Multitasking Analysis

7-24

See also Target processor type (-target).
• The operation can involve writing the return value of a function call to a shared variable. For

example, the operation x=func() involves calling func and writing the return value of func to x.

To detect data races where at least one of the two interrupting operations is nonatomic, enable the
Bug Finder checker Data race. To remove this constraint on the checker, enable Data race
including atomic operations.

Define Specific Operations as Atomic
You might want to define a group of operations as atomic. This group of operations cannot be
interrupted by operations in another thread or task.

Use one of these techniques:

• Critical sections

Protect a group of operations with critical sections.

A critical section begins and ends with calls to specific functions. You can use a predefined set of
primitives to begin or end critical sections, or use your own functions.

A group of operations in a critical section are atomic with respect to another group of operations
that are in the same critical section (that is, having the same beginning and ending function).

Specify critical sections using the option Critical section details (-critical-
section-begin -critical-section-end).

• Temporally exclusive tasks

Protect a group of operations by specifying certain tasks as temporally exclusive.

If a group of tasks are temporally exclusive, all operations in one task are atomic with respect to
operations in the other tasks.

Specify temporal exclusion using the option Temporally exclusive tasks (-temporal-
exclusions-file).

• Task priorities (Bug Finder only)

Protect a group of operations by specifying that certain tasks have higher priorities. For instance,
interrupts have higher priorities over cyclic tasks.

You can specify up to four different priorities with these options (with highest priority listed first):

• Interrupts (-interrupts)
• -preemptable-interrupts
• -non-preemptable-tasks
• Cyclic tasks (-cyclic-tasks)

All operations in a task with higher priority are atomic with respect to operations in tasks with
lower priorities. See also “Define Preemptable Interrupts and Nonpreemptable Tasks” on page 7-
27.

 Define Atomic Operations in Multitasking Code

7-25

• Routine disabling interrupts (Bug Finder only)

Protect a group of operations by disabling all interrupts. Use the option Disabling all
interrupts (-routine-disable-interrupts -routine-enable-interrupts).

After you call a routine to disable interrupts, all subsequent operations are atomic until you call
another routine to reenable interrupts. The operations are atomic with respect to operations in all
other tasks.

For a tutorial, see “Protections for Shared Variables in Multitasking Code” on page 7-20.

See Also
Critical section details (-critical-section-begin -critical-section-end) |
Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) | Temporally exclusive
tasks (-temporal-exclusions-file)

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Protections for Shared Variables in Multitasking Code” on page 7-20

7 Configure Multitasking Analysis

7-26

Define Preemptable Interrupts and Nonpreemptable Tasks
Bug Finder detects data races between concurrent tasks. Using Bug Finder analysis options, you can
fix data race detection by specifying that certain tasks have higher priorities over others. A task with
higher priority is atomic with respect to tasks with lower priority and cannot be interrupted by those
tasks.

Emulating Task Priorities
You can specify up to four different priorities with these options (with highest priority listed first):

• Interrupts (nonpreemptable): Use option Interrupts (-interrupts).
• Interrupts (preemptable): Use options Interrupts (-interrupts) and -preemptable-

interrupts.
• Cyclic tasks (nonpreemptable): Use options Cyclic tasks (-cyclic-tasks) and -non-

preemptable-tasks.

You can also define preemptable noncyclic tasks with the option Entry points (-entry-
points) and -non-preemptable-tasks.

• Cyclic tasks (preemptable): Use option Cyclic tasks (-cyclic-tasks).

You can also define noncyclic tasks with the option Entry points (-entry-points).

For instance, interrupts have the highest priority and cannot be preempted by other tasks. To define a
class of interrupts that can be preempted, lower their priority by making them preemptable.

Examples of Task Priorities
Consider this example with three tasks. A variable var is shared between the two tasks task1 and
task2 without any protection such as a critical section. Depending on the priorities of task1 and
task2, Bug Finder shows a data race. The third task is not relevant for the example (and is added
only to include a critical section, otherwise data race detection is disabled).

int var;

void begin_critical_section(void);
void end_critical_section(void);

void task1(void) {
 var++;
}

void task2(void) {
 var=0;
}

void task3(void){
 begin_critical_section();
 /* Some atomic operation */

 Define Preemptable Interrupts and Nonpreemptable Tasks

7-27

 end_critical_section();
}

Adjust the priorities of task1 and task2 and see whether a data race is detected. For instance:

1 Configure these multitasking options:

• Interrupts (-interrupts): Specify task1 and task2 as interrupts.
• Cyclic tasks (-cyclic-tasks): Specify task3 as a cyclic task.
• Critical section details (-critical-section-begin -critical-section-

end): Specify begin_critical_section as a function beginning a critical section and
end_critical_section as a function ending a critical section.

2 Run Bug Finder.

You do not see a data race. Since task1 and task2 are nonpreemptable interrupts, the shared
variable cannot be accessed concurrently.

3 Change task1 to a preemptable interrupt by using the option -preemptable-interrupts.
4 Run Bug Finder again. You now see a data race on the shared variable var.

Further Explorations
Modify this example in the following ways and see the effect of the modification:

• Change the priorities of task1 and task2.

For instance, you can leave task1 as a nonpreemptable interrupt but change task2 to a
preemptable interrupt by using the option -preemptable-interrupts.

The data race disappears. The reason is:

• task1 has higher priority and cannot be interrupted by task2.
• The operation in task2 is atomic and cannot be interrupted by task1.

• Enable the checker Data race including atomic operations (not enabled by default). Use
the option Find defects (-checkers).

You see the data race again. The checker considers all operations as potentially nonatomic and the
operation in task2 can now be interrupted by the higher priority operation in task1.

Try other modifications to the analysis options and see the result of the checkers.

See Also
Polyspace Analysis Options
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts)

Polyspace Results
Data race | Data race including atomic operations

7 Configure Multitasking Analysis

7-28

More About
• “Analyze Multitasking Programs in Polyspace” on page 7-2
• “Protections for Shared Variables in Multitasking Code” on page 7-20
• “Define Atomic Operations in Multitasking Code” on page 7-24

 Define Preemptable Interrupts and Nonpreemptable Tasks

7-29

Define Critical Sections with Functions That Take Arguments
When verifying multitasking code, Polyspace considers that a critical section lies between calls to a
lock and unlock function.

lock();
/* Critical section code */
unlock();

A group of operations in a critical section are atomic with respect to another group of operations that
are in the same critical section (that is, having the same lock and unlock function). See also “Define
Atomic Operations in Multitasking Code” on page 7-24.

Polyspace Assumption on Functions Defining Critical Sections
Polyspace ignores arguments to functions that begin and end critical sections.

For instance, Polyspace treats the two code sections below as the same critical section if you specify
my_task_1 and my_task_2 as entry points, my_lock as the lock function and my_unlock as the
unlock function.

int shared_var;

void my_lock(int);
void my_unlock(int);

void my_task_1() {
 my_lock(1);
 /* Critical section code */
 shared_var=0;
 my_unlock(1);
}

void my_task_2() {
 my_lock(2);
 /* Critical section code */
 shared_var++;
 my_unlock(2);
}

As a result, the analysis considers that these two sections are protected from interrupting each other
even though they might not be protected. For instance, Bug Finder does not detect the data race on
shared_var.

Often, the function arguments can be determined only at run time. Since Polyspace models the
critical sections prior to the static analysis and run-time error checking phase, the analysis cannot
determine if the function arguments are different and ignores the arguments.

Adapt Polyspace Analysis to Lock and Unlock Functions with
Arguments
When the arguments to the functions defining critical sections are compile-time constants, you can
adapt the analysis to work around the Polyspace assumption.

7 Configure Multitasking Analysis

7-30

For instance, you can use Polyspace analysis options so that the code in the preceding example
appears to Polyspace as shown here.

int shared_var;

void my_lock_1(void);
void my_lock_2(void);
void my_unlock_1(void);
void my_unlock_2(void);

void my_task_1() {
 my_lock_1();
 /* Critical section code */
 shared_var=0;
 my_unlock_1();
}

void my_task_2() {
 my_lock_2();
 /* Critical section code */
 shared_var++;
 my_unlock_2();
}

If you then specify my_lock_1 and my_lock_2 as the lock functions and my_unlock_1 and
my_unlock_2 as the unlock functions, the analysis recognizes the two sections of code as part of
different critical sections. For instance, Bug Finder detects a data race on shared_var.

To adapt the analysis for lock and unlock functions that take compile-time constants as arguments:

1 In a header file common_polyspace_include.h, convert the function arguments into
extensions of the function name with #define-s. In addition, provide a declaration for the new
functions.

For instance, for the preceding example, use these #define-s and declarations:

#define my_lock(X) my_lock_##X()
#define my_unlock(X) my_unlock_##X()

void my_lock_1(void);
void my_lock_2(void);
void my_unlock_1(void);
void my_unlock_2(void);

2 Specify the file name common_polyspace_include.h as argument for the option Include (-
include).

The analysis considers this header file as #include-d in all source files that are analyzed.
3 Specify the new function names as functions beginning and ending critical sections. Use the

options Critical section details (-critical-section-begin -critical-section-
end).

See Also
Critical section details (-critical-section-begin -critical-section-end)

 Define Critical Sections with Functions That Take Arguments

7-31

More About
• “Protections for Shared Variables in Multitasking Code” on page 7-20

7 Configure Multitasking Analysis

7-32

Configure Coding Rules Checking and
Code Metrics Computation

8

Check for Coding Standard Violations
With Polyspace, you can check your C/C++ code for violations of coding rules such as MISRA C:2012
rules. Adhering to coding rules can reduce the number of defects and improve the quality of your
code.

Polyspace can detect the violations of these rules:

• MISRA C:2004
• MISRA C:2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT C (Bug Finder only)
• CERT C++ (Bug Finder only)
• ISO®/IEC TS 17961 (Bug Finder only)
• Guidelines

Configure Coding Rules Checking

8 Configure Coding Rules Checking and Code Metrics Computation

8-2

Specify Standard and Predefined Checker Subsets

Specify the coding rules through Polyspace analysis options. When you run Bug Finder or Code
Prover, the analysis looks for coding rule violations in addition to other checks. You can disable the
other checks and look for coding rule violations only.

In the Polyspace user interface (desktop products), the options are on the Configuration pane under
the Coding Standards & Code Metrics node.

For C code, use one of these options:

• Check MISRA C:2004 (-misra2)

For generated code, enable the option specific to generated code.
• Check MISRA C:2012 (-misra3)

For generated code, enable the option specific to generated code.
• Check SEI CERT-C (-cert-c)
• Check ISO/IEC TS 17961 (-iso-17961)
• Check Guidelines (-guidelines)

For C++ code, use one of these options:

• Check MISRA C++ rules (-misra-cpp)
• Check JSF C++ rules (-jsf-coding-rules)
• Check AUTOSAR C++ 14 (-autosar-cpp14)
• Check SEI CERT-C++ (-cert-cpp)
• Check Guidelines (-guidelines)

You can specify a predefined subset of rules, for instance, mandatory for MISRA C:2012. These
subsets are typically defined by the standard.

You can also define naming conventions for identifiers using regular expressions. See “Create Custom
Coding Rules” on page 8-47.

Customize Checker Subsets

Instead of the predefined subsets, you can specify your own subset of rules from a coding standard.

User Interface (Desktop Products Only)

1 Select the coding standard. From the drop-down list for the subset of rules, select from-file.
Click Edit.

2 In the Findings selection window, the coding standard is highlighted on the left pane. On the
right pane, select the rules that you want to include in your analysis.

• When selecting Guidelines > Software Complexity checkers, review their thresholds. If the
default thresholds are not acceptable, specify a suitable threshold in the Threshold column.
See .

 Check for Coding Standard Violations

8-3

• When selecting Custom rules, review the Pattern and Convention for the rules. See Check
custom rules (-custom-rules).

When you save the rule selections, the configuration is saved in an XML file that you can reuse for
multiple analyses. The same file contains rules selected for all coding standards. You can reuse this
file across multiple projects to enforce common coding standards in a team or organization. To reuse
this file in another project in the Polyspace user interface:

• Choose a coding standard in the project configuration. From the drop-down list for the subset of
rules, select from-file.

• Click Edit and browse to the file location. Alternatively, enter the file name as argument for the
option Set checkers by file (-checkers-selection-file).

8 Configure Coding Rules Checking and Code Metrics Computation

8-4

Command Line

With the Polyspace desktop products, you can create a coding standard XML file in the user interface
and then use this file for command-line analysis. Provide this XML file with the option Set checkers
by file (-checkers-selection-file).

With the Polyspace Server products, you have to create a coding standard XML from scratch.
Depending on the standard that you want to enable, make a writeable copy of one of the files in
polyspaceserverroot\help\toolbox\polyspace_bug_finder_server\examples
\coding_standards_XML and turn off rules using entries in the XML file (all rules from a standard
are enabled in the template). Here, polyspaceserverroot is the root installation folder for the
Polyspace Server products, for instance, C:\Program Files\Polyspace Server\R2019a.

For instance, to turn off MISRA C:2012 rule 8.1, use this entry in a copy of the file
misra_c_2012_rules.xml:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="off">
 </check>
 ...
 </section>
 ...
</standard>

When using the Guideline checkers, specify their threshold between the threshold tags. For
instance, to activates the checker Cyclomatic Complexity Exceeds Threshold and set the
threshold for the checker to five, use this entry in a copy of the guidelines.xml:

<check id="SC18" state="on">
 <threshold>5</threshold>
</check>

To use the XML file for a MISRA C:2012 analysis in Bug Finder, enter:

polyspace-bug-finder -sources filename -misra3 from-file
 -checkers-selection-file misra_c_2012_rules.xml

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “CERT C++ Rules” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)
• “Guidelines” (Polyspace Bug Finder Access)

 Check for Coding Standard Violations

8-5

Note The XML format of the checker configuration file can change in future releases.

Check for Coding Standards Only

To check for coding standards only:

• In Bug Finder, disable checking of defects. Use the option Find defects (-checkers).
• In Code Prover, check for source compliance only. Use the option Verification level (-to).

These rules are checked in the later stages of a Code Prover analysis: MISRA C:2004 rules 9.1,
13.7, and 21.1, and MISRA C:2012 rules 2.2, 9.1, 14.3, and 18.1. If you stop Code Prover at source
compliance checking, the analysis might not find all violations of these rules. You can also see a
difference in results based on your choice for the option Verification level (-to). For
example, it is possible that Code Prover suspects in the first pass that a variable may be
uninitialized but proves in the second pass that the variable is initialized. In that case, you see a
violation of MISRA C:2012 Rule 9.1 in the first pass but not in the second pass.

Review Coding Rule Violations

8 Configure Coding Rules Checking and Code Metrics Computation

8-6

After analysis, you see the coding standard violations on the Results List pane. Select a violation to
see further details on the Result Details pane and the source code on the Source pane.

Violations of coding standards are indicated in the source code with the icon.

For further steps, see “Review Polyspace Bug Finder Results in Web Browser” (Polyspace Bug Finder
Access).

 Check for Coding Standard Violations

8-7

Generate Reports
You can generate reports using templates that are explicitly defined for coding standards. Use the
CodingStandards template. This template:

• Reports only coding standard violations in your analysis results, and omits other types of results
such as defects, run-time errors or code metrics.

• Creates a separate chapter in the report for each coding standard. the chapter provides an
overview of all violations of the standard and then lists each violation.

To specify a report template, use the option Bug Finder and Code Prover report (-report-
template).

See Also

More About
• “Interpret Bug Finder Results in Polyspace Access Web Interface” (Polyspace Bug Finder

Access)

8 Configure Coding Rules Checking and Code Metrics Computation

8-8

Avoid Violations of MISRA C:2012 Rules 8.x
MISRA C:2012 rules 8.1-8.14 enforce good coding practices surrounding declarations and definitions.
If you follow these practices, you are less likely to have conflicting declarations or to unintentionally
modify variables.

If you do not follow these practices during coding, your code might require major changes later to be
MISRA C-compliant. You might have too many MISRA C violations. Sometimes, in fixing a violation,
you might violate another rule. Instead, keep these rules in mind when coding. Use the MISRA
C:2012 checker to spot any issues that you might have missed.

• Explicitly specify all data types in declarations.

Avoid implicit data types like this declaration of k:

extern void foo (char c, const k);

Instead use:

extern void foo (char c, const int k);

That way, you do not violate MISRA C:2012 Rule 8.1 (Polyspace Bug Finder Access).
• When declaring functions, provide names and data types for all parameters.

Avoid declarations without parameter names like these declarations:

extern int func(int);
extern int func2();

Instead use:

extern int func(int arg);
extern int func2(void);

That way, you do not violate MISRA C:2012 Rule 8.2 (Polyspace Bug Finder Access).
• If you want to use an object or function in multiple files, declare the object or function

once in only one header file.

To use an object in multiple source files, declare it as extern in a header file. Include the header
file in all the source files where you need the object. In one of those source files, define the object.
For instance:

/* header.h */
extern int var;

/* file1.c */
#include "header.h"
/* Some usage of var */

/* file2.c */
#include "header.h"
int var=1;

To use a function in multiple source files, declare it in a header file. Include the header file in all
the source files where you need the function. In one of those source files, define the function.

 Avoid Violations of MISRA C:2012 Rules 8.x

8-9

That way, you do not violate MISRA C:2012 Rule 8.3 (Polyspace Bug Finder Access), MISRA
C:2012 Rule 8.4 (Polyspace Bug Finder Access), MISRA C:2012 Rule 8.5 (Polyspace Bug
Finder Access), or MISRA C:2012 Rule 8.6 (Polyspace Bug Finder Access).

• If you want to use an object or function in one file only, declare and define the object or
function with the static specifier.

Make sure that you use the static specifier in all declarations and the definition. For instance,
this function func is meant to be used only in the current file:

static int func(void);
static int func(void){
}

That way, you do not violate MISRA C:2012 Rule 8.7 (Polyspace Bug Finder Access) and MISRA
C:2012 Rule 8.8 (Polyspace Bug Finder Access).

• If you want to use an object in one function only, declare the object in the function body.

Avoid declaring the object outside the function.

For instance, if you use var in func only, do declare it outside the body of func:

int var;
void func(void) {
 var=1;
}

Instead use:

void func(void) {
 int var;
 var=1;
}

That way, you do not violate MISRA C:2012 Rule 8.7 (Polyspace Bug Finder Access) and MISRA
C:2012 Rule 8.9 (Polyspace Bug Finder Access).

• If you want to inline a function, declare and define the function with the static
specifier.

Every time you add inline to a function definition, add static too:

static inline double func(int val);
static inline double func(int val) {
}

That way, you do not violate MISRA C:2012 Rule 8.10 (Polyspace Bug Finder Access).
• When declaring arrays, explicitly specify their size.

Avoid implicit size specifications like this:

extern int32_t array[];

Instead use:

#define MAXSIZE 10
extern int32_t array[MAXSIZE];

8 Configure Coding Rules Checking and Code Metrics Computation

8-10

That way, you do not violate MISRA C:2012 Rule 8.11 (Polyspace Bug Finder Access).
• When declaring enumerations, try to avoid mixing implicit and explicit specifications.

Avoid mixing implicit and explicit specifications. You can specify the first enumeration constant
explicitly, but after that, use either implicit or explicit specifications. For instance, avoid this type
of mix:

enum color {red = 2, blue, green = 3, yellow};

Instead use:

enum color {red = 2, blue, green, yellow};

That way, you do not violate MISRA C:2012 Rule 8.12 (Polyspace Bug Finder Access).
• When declaring pointers, point to a const-qualified type unless you want to use the

pointer to modify an object.

Point to a const-qualified type by default unless you intend to use the pointer for modifying the
pointed object. For instance, in this example, ptr is not used to modify the pointed object:

char last_char(const char * const ptr){
}

That way, you do not violate MISRA C:2012 Rule 8.13 (Polyspace Bug Finder Access).

 Avoid Violations of MISRA C:2012 Rules 8.x

8-11

Reduce Software Complexity by Using Polyspace Checkers
Software complexity refers to various quantifiable metrics of a software module or source files, such
as number of lines, number of paths, number of functions, or the complexity of the function call tree.
The Polyspace software complexity checkers are raised when these metrics exceeds a threshold. High
software complexity might indicate that your code is difficult to read, understand, and debug. It is
more efficient to maintain the acceptable level of software complexity during development instead of
refactoring complex projects later on. Use the software complexity checkers to detect complex
modules early in the development cycle to reduce later refactoring efforts.

You can also calculate the absolute values of code complexity metrics for all files and functions. See
“Compute Code Complexity Metrics” on page 8-49.

Configure Thresholds for Software Complexity Checkers
Each software complexity checker corresponds to a complexity metric. Polyspace raises a software
complexity checker when the corresponding code complexity metric exceeds a threshold.

The default thresholds of these checkers follow the Hersteller Initiative Software (HIS) Code
Complexity standard. See “HIS Code Complexity Metrics” on page 8-52. For checkers that are not
present in the HIS standard, the default thresholds are high enough that the code complexity metrics
of your code might always be below the threshold. To use these checkers effectively, specify an
appropriate threshold for them.

Determine an appropriate set of thresholds for these checkers depending on the best practice for
your use case. For instance, when analyzing new projects or newly developed code, you might want to
reduce the use of GOTO statements by setting the threshold of Number of goto statements
exceeds threshold to zero. When analyzing modules containing legacy libraries, you might want
to set the threshold to a higher number.

Depending on your Polyspace product, use the user interface or the command-line interface to specify
the threshold. For instance:

• In Polyspace desktop or Server products, in the Checkers selection window, navigate to
Guidelines > Software Complexity and specify the threshold. In the command line, use the
analysis option Check Guidelines (-guidelines). See “Check for Coding Standard
Violations” on page 8-2.

• In Polyspace as You Code extension, start the Checkers selection window and specify the
thresholds in the Guidelines > Software Complexity node.

• In Eclipse™, open the Checkers selection window from the Configure Project window. See
“Configure Checkers for Polyspace as You Code in Eclipse” (Polyspace Bug Finder Access).

• In Visual Studio, open the Checkers selection window from the Polyspace > Project node of
the Options window. See “Configure Checkers for Polyspace as You Code in Visual Studio”
(Polyspace Bug Finder Access).

• In Visual Studio Code, open the Checkers selection window from the command palette. See
“Configure Checkers for Polyspace as You Code in Visual Studio Code” (Polyspace Bug Finder
Access).

• At the command line, open the Checkers selection window by running the command
polyspace-checkers-selection. See “Configure Checkers for Polyspace as You Code at
the Command Line” (Polyspace Bug Finder Access).

8 Configure Coding Rules Checking and Code Metrics Computation

8-12

Identify and Reduce Software Complexity
Identify Software Complexity by Running Bug Finder Analysis

To identify software complexity, configure the thresholds of the checkers. For instance, set the
thresholds of the checkers listed in this table.

Checker Threshold
Comment density below threshold 20
Call tree complexity exceeds threshold 10
Number of call occurrences exceeds
threshold

10

Language scope exceeds threshold 400

The thresholds indicate the acceptable level of software complexity. To identify issues in your code
that might lead to a higher level of complexity, after configuring the software complexity checkers,
run a Polyspace Bug Finder analysis. Consider this code:

 long long power(double x, int n){
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }

 double AppxIndex(double m, double f){//Noncompliant
 double U = (power(m,2) - 1)/(power(m,2)+2);
 double V = (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V+ power(m,3)
 /power(m,3)*(U-V)))/((1-2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V))));
 }

The function AppxIndex appears complex. It is not obvious how you might reduce the complexity.
The software complexity checkers help you identify the sources of complexity.

After the Bug Finder analysis, the configured checkers are raised:

• Comment density below threshold: The functions in the code contain no explanatory
comments.

• Call tree complexity exceeds threshold and Number of call occurrences
exceeds threshold: There are too many function calls compared to the number of function
definitions. These checks indicate that you can package some of the expressions into separate
functions.

• Language scope exceeds threshold: The same operand is repeated several times. You can
reduce some of the repetition. For instance, the function power is called with the same arguments
several times.

These checks indicate that the function AppxIndex might make the code difficult to read,
understand, and debug. To reduce the complexity of the code, address the raised checks.

 Reduce Software Complexity by Using Polyspace Checkers

8-13

Reduce Software Complexity

Reduce the complexity of your code by addressing the identified issues. In this case, the root cause of
the raised checks is that the function AppxIndex performs several tasks instead of performing one
single task. For instance, the function first calculates U, then it calculates V, and finally it evaluates a
lengthy expression containing both U and V. To address these issues, refactor the function
AppxIndex so that each task is delegated to a separate function. You might break down the lengthy
expression into smaller parts. For instance:

// This code calculates effective index of materials as described in
// the formula in 10.1364...
// power(x,n) returns the nth power of x (x^n)
// n is an integer
// x is a double
// return type is long long

long long power(double x, int n){//Compliant
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
}
// CalculateU(m) calculates the first intermediate variable
// required to calculate polarization
// m is the relative refractive index
// return type is double;

double CalculateU(double m){//Compliant
 return (power(m,2) - 1)/(power(m,2)+2);
}
// CalculateV(m) calculates the second intermediate variable
// required to calculate polarization
// m is the relative refractive index
// return type is double;

double CalculateV(double m){//Compliant
 return (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
}
// CalculateMid(m,f) calculates the large term present
// in both numerator and denominator
// of the effective index calculation
// m is the relative refractive index
// f is the fillfactor
// return type is double;

double CalculateMid(double m, double f){//Compliant
 double U = CalculateU(m);
 double V = CalculateU(m);
 return 2*f*power(U,2)*(1+power(m,2)*U*V + power(m,3)/power(m,3)*(U-V));
}
//AppxIndex(m,f) calculates the approximate effective index
// m is the relative refractive index
// f is the fillfactor
//return type is double
double AppxIndex(double m, double f){//Compliant

8 Configure Coding Rules Checking and Code Metrics Computation

8-14

 return (1+CalculateMid(m,f))/((1-CalculateMid(m,f)));
}

In this code, none of the software complexity checkers is raised, which indicates that you reduced the
complexity of this code to an acceptable level. To reduce the software complexity:

1 Document the code with sufficient comments.
2 Break down the The large complex task performed by AppxIndex into smaller and simpler tasks,

which are then delegated to individual functions such as CalculateU, CalculateV and
CalculateMid. The function power is now called less frequently. If you later implement a
different function to calculate a power and want to use the new function instead of the current
one, you have to make fewer replacements.

3 Write the new functions to perform one specific task with as little overlap of their functionalities
as possible. As a result, these functions contain less repetition of the same operands.

For details about addressing a software complexity check, see the documentation of the checker.

In cases when you are unable to refactor the code, address the checks through code annotations. For
instance, if you are using a complex library, you might choose to annotate the checks that are raised
on the library. See “Hide Known or Acceptable Polyspace Results” (Polyspace Bug Finder Access).
When you annotate a file or function code metric, the corresponding software complexity checker is
also annotated by the same comment.

See Also

 Reduce Software Complexity by Using Polyspace Checkers

8-15

Software Quality Objective Subsets (C:2004)
In this section...
“Rules in SQO-Subset1” on page 8-16
“Rules in SQO-Subset2” on page 8-17

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the number of
unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
12.12 The underlying bit representations of floating-point values shall not be used.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object.
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of pointer

indirection.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.

8 Configure Coding Rules Checking and Code Metrics Computation

8-16

Rule number Description
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the number of
unproven results in Polyspace Code Prover. The following set of coding rules enforce good design
practices. The SQO-subset2 option checks the rules in SQO-subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of the basic

types
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
9.2 Braces shall be used to indicate and match the structure in the nonzero

initialization of arrays and structures
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized
10.3 The value of a complex expression of integer type may only be cast to a type

that is narrower and of the same signedness as the underlying type of the
expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function and any

type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence rules in

expressions
12.2 The value of an expression shall be the same under any order of evaluation that

the standard permits
12.5 The operands of a logical && or || shall be primary-expressions

 Software Quality Objective Subsets (C:2004)

8-17

Rule number Description
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean.

Expression that are effectively Boolean should not be used as operands to
operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned

12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not be used.
13.1 Assignment operators shall not be used in expressions that yield Boolean

values
13.2 Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
13.6 Numeric variables being used within a “for” loop for iteration counting should

not be modified in the body of the loop
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for statement

shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration
16.7 A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object.
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of pointer

indirection.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.

8 Configure Coding Rules Checking and Code Metrics Computation

8-18

Rule number Description
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized

expression, a type qualifier, a storage class specifier, or a do-while-zero
construct

19.9 Arguments to a function-like macro shall not contain tokens that look like
preprocessing directives

19.10 In the definition of a function-like macro each instance of a parameter shall be
enclosed in parentheses unless it is used as the operand of # or ##

19.11 All macro identifiers in preprocessor directives shall be defined before use,
except in #ifdef and #ifndef preprocessor directives and the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor operators
in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of values. For
example, the following code checks the validity of an input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

See Also
Check MISRA C:2004 (-misra2)

More About
• “Check for Coding Standard Violations” on page 8-2

 Software Quality Objective Subsets (C:2004)

8-19

Software Quality Objective Subsets (AC AGC)
In this section...
“Rules in SQO-Subset1” on page 8-20
“Rules in SQO-Subset2” on page 8-20

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the number of
unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
12.12 The underlying bit representations of floating-point values shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.

For more information about these rules, see MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the number of
unproven results in Polyspace Code Prover. The following set of coding rules enforce good design
practices. The SQO-subset2 option checks the rules in SQO-subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.

8 Configure Coding Rules Checking and Code Metrics Computation

8-20

Rule number Description
6.3 typedefs that indicate size and signedness should be used in place of the basic

types
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized
11.1 Conversion shall not be performed between a pointer to a function and any

type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.5 Type casting from any type to or from pointers shall not be used
12.2 The value of an expression shall be the same under any order of evaluation that

the standard permits
12.9 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned
12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.9 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives
19.10 In the definition of a function-like macro each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##

 Software Quality Objective Subsets (AC AGC)

8-21

Rule number Description
19.11 All macro identifiers in preprocessor directives shall be defined before use,

except in #ifdef and #ifndef preprocessor directives and the defined() operator
19.12 There shall be at most one occurrence of the # or ## preprocessor operators

in a single macro definition.
20.3 The validity of values passed to library functions shall be checked.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of values. For
example, the following code checks the validity of an input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

See Also
Check MISRA AC AGC (-misra-ac-agc)

More About
• “Check for Coding Standard Violations” on page 8-2

8 Configure Coding Rules Checking and Code Metrics Computation

8-22

Software Quality Objective Subsets (C:2012)
In this section...
“Guidelines in SQO-Subset1” on page 8-23
“Guidelines in SQO-Subset2” on page 8-24

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the precision of
your Polyspace results. When you set up coding rules checking, you can select these subsets.

Guidelines in SQO-Subset1
The following set of MISRA C:2012 coding guidelines typically reduces the number of unproven
results in Polyspace Code Prover.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be explicitly

specified
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and any other

type
11.2 Conversions shall not be performed between a pointer to an incomplete type and

any other type
11.4 A conversion should not be performed between a pointer to object and an integer

type
11.5 A conversion should not be performed from pointer to void into pointer to object
11.6 A cast shall not be performed between pointer to void and an arithmetic type
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same function
15.3 Any label referenced by a goto statement shall be declared in the same block, or

in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
18.3 The relational operators >, >=, < and <= shall not be applied to objects of

pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type

 Software Quality Objective Subsets (C:2012)

8-23

Rule Description
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to another

object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used

Guidelines in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the number of
unproven results in Polyspace Code Prover. The following set of coding rules enforce good design
practices. The SQO-subset2 option checks the rules in SQO-subset1 and some additional rules.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be explicitly

specified
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and any other

type
11.2 Conversions shall not be performed between a pointer to an incomplete type and

any other type
11.4 A conversion should not be performed between a pointer to object and an integer

type
11.5 A conversion should not be performed from pointer to void into pointer to object
11.6 A cast shall not be performed between pointer to void and an arithmetic type
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type
11.8 A cast shall not remove any const or volatile qualification from the type pointed to

by a pointer
12.1 The precedence of operators within expressions should be made explicit
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the same under

all permitted evaluation orders
13.4 The result of an assignment operator should not be used
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same function

8 Configure Coding Rules Checking and Code Metrics Computation

8-24

Rule Description
15.3 Any label referenced by a goto statement shall be declared in the same block, or

in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration- statement or a selection- statement shall be a compound-

statement
15.7 All if … else if constructs shall be terminated with an else statement
16.4 Every switch statement shall have a default label
16.5 A default label shall appear as either the first or the last switch label of a switch

statement
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
17.4 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression
18.3 The relational operators >, >=, < and <= shall not be applied to objects of

pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to another

object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
20.4 A macro shall not be defined with the same name as a keyword
20.6 Tokens that look like a preprocessing directive shall not occur within a macro

argument
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed

in parentheses
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing

directives shall be #define'd before evaluation
20.11 A macro parameter immediately following a # operator shall not immediately be

followed by a ## operator
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used

See Also
Check MISRA C:2012 (-misra3)

More About
• “Check for Coding Standard Violations” on page 8-2

 Software Quality Objective Subsets (C:2012)

8-25

Software Quality Objective Subsets (C++)

In this section...
“SQO Subset 1 – Direct Impact on Selectivity” on page 8-26
“SQO Subset 2 – Indirect Impact on Selectivity” on page 8-27

SQO Subset 1 – Direct Impact on Selectivity
The following set of MISRA C++ coding rules will typically improve the number of unproven results
in Polyspace Code Prover.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer

scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly

by initialization.
3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to

the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object

with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall

only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains

constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a

block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-4 For any iteration statement there shall be no more than one break or goto statement

used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.

8 Configure Coding Rules Checking and Code Metrics Computation

8-26

MISRA C++ Rule Description
7-5-2 The address of an object with automatic storage shall not be assigned to another object

that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each path through

the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch

statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch

handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor

shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-

block for a derived class and some or all of its bases, the handlers shall be ordered most-
derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of the
same function (in other translation units) shall be declared with the same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall

only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity
Good design practices generally lead to less code complexity, which can improve the number of
unproven results in Polyspace Code Prover. The following set of coding rules may help to address
design issues in your code. The SQO-subset2 option checks the rules in SQO-subset1 and SQO-
subset2.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer

scope.

 Software Quality Objective Subsets (C++)

8-27

MISRA C++ Rule Description
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly

by initialization.
3-3-2 If a function has internal linkage then all re-declarations shall include the static storage

class specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that minimizes

its visibility.
3-9-2 typedefs that indicate size and signedness should be used in place of the basic

numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.
4-5-1 Expressions with type bool shall not be used as operands to built-in operators other

than the assignment operator =, the logical operators &&, ||, !, the equality operators
== and !=, the unary & operator, and the conditional operator.

5-0-1 The value of an expression shall be the same under any order of evaluation that the
standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of the

underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the underlying type

of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an underlying type of

unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

5-0-13 The condition of an if-statement and the condition of an iteration- statement shall have
type bool

5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to

the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived class by

means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a pointer or

reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type, including a

pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer type, either

directly or indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object

with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.

8 Configure Coding Rules Checking and Code Metrics Computation

8-28

MISRA C++ Rule Description
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.
5-3-2 The unary minus operator shall not be applied to an expression whose underlying type

is unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for statement shall be

a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall

only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains

constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a

block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-4 For any iteration statement there shall be no more than one break or goto statement

used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to another object

that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an explicit return

statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be preceded by

&.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero initialization

of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.

 Software Quality Objective Subsets (C++)

8-29

MISRA C++ Rule Description
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each path

through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an abstract

class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch

statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch

handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor

shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-

block for a derived class and some or all of its bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of the
same function (in other translation units) shall be declared with the same set of type-
ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall

only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall be

enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,

except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage class

specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single macro

definition.
18-4-1 Dynamic heap memory allocation shall not be used.

8 Configure Coding Rules Checking and Code Metrics Computation

8-30

See Also
Check MISRA C++:2008 (-misra-cpp)

More About
• “Check for Coding Standard Violations” on page 8-2

 Software Quality Objective Subsets (C++)

8-31

Coding Rule Subsets Checked Early in Analysis
In the initial compilation phase of the analysis, Polyspace checks those coding rules that do not
require the run-time error detection part of the analysis. If you want only those rules checked, you
can perform a much quicker analysis.

The software provides two predefined subsets of rules that it checks earlier in the analysis. The
subsets are available with the options Check MISRA C:2004 (-misra2), Check MISRA AC AGC
(-misra-ac-agc), and Check MISRA C:2012 (-misra3).

Argument Purpose
single-unit-rules Check rules that apply only to single translation units.

If you detect only coding rule violations and select this subset, a Bug Finder
analysis stops after the compilation phase.

system-decidable-
rules

Check rules in the single-unit-rules subset and some rules that apply to
the collective set of program files. The additional rules are the less complex
rules that apply at the integration level. These rules can be checked only at
the integration level because the rules involve more than one translation
unit.

If you detect only coding rule violations and select this subset, a Bug Finder
analysis stops after the linking phase.

See also “Check for Coding Standard Violations” on page 8-2.

MISRA C:2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis. The rules that are checked at a system
level and appear only in the system-decidable-rules subset are indicated by an asterisk.

Environment

Rule Description
1.1* All code shall conform to ISO 9899:1990 "Programming languages - C", amended and

corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC 9899/
COR2:1996.

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

8 Configure Coding Rules Checking and Code Metrics Computation

8-32

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be used.
4.2 Trigraphs shall not be used.

Identifiers

Rule Description
5.1* Identifiers (internal and external) shall not rely on the significance of more than 31

characters.
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an outer

scope, and therefore hide that identifier.
5.3* A typedef name shall be a unique identifier.
5.4* A tag name shall be a unique identifier.
5.5* No object or function identifier with a static storage duration should be reused.
5.6* No identifier in one name space should have the same spelling as an identifier in another

name space, with the exception of structure and union member names.
5.7* No identifier name should be reused.

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character values.
6.2 Signed and unsigned char type shall be used only for the storage and use of numeric

values.
6.3 typedefs that indicate size and signedness should be used in place of the basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be used.

 Coding Rule Subsets Checked Early in Analysis

8-33

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible at both the

function definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be explicitly stated.
8.3 For each function parameter the type given in the declaration and definition shall be

identical, and the return types shall also be identical.
8.4* If objects or functions are declared more than once their types shall be compatible.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a single

function.
8.8* An external object or function shall be declared in one file and only one file.
8.9* An identifier with external linkage shall have exactly one external definition.
8.10* All declarations and definitions of objects or functions at file scope shall have internal

linkage unless external linkage is required.
8.11 The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated explicitly or

defined implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero initialization of

arrays and structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.

8 Configure Coding Rules Checking and Code Metrics Computation

8-34

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a different

underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a different
type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type that is
narrower and of the same signedness as the underlying type of the expression.

10.4 The value of a complex expression of float type may only be cast to narrower floating
type.

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type unsigned
char or unsigned short, the result shall be immediately cast to the underlying type of
the operand

10.6 The "U" suffix shall be applied to all constants of unsigned types.

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any type other

than an integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type other

than an integral type, another pointer to a object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a different pointer

to object type.
11.5 A cast shall not be performed that removes any const or volatile qualification from

the type addressed by a pointer

 Coding Rule Subsets Checked Early in Analysis

8-35

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in expressions.
12.3 The sizeof operator should not be used on expressions that contain side effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean. Expression

that are effectively Boolean should not be used as operands to operators other than (&&,
|| or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is signed.
12.9 The unary minus operator shall not be applied to an expression whose underlying type is

unsigned.
12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with other

operators in an expression

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean values.
13.2 Tests of a value against zero should be made explicit, unless the operand is effectively

Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of floating

type.
13.5 The three expressions of a for statement shall be concerned only with loop control.
13.6 Numeric variables being used within a for loop for iteration counting should not be

modified in the body of the loop.

8 Configure Coding Rules Checking and Code Metrics Computation

8-36

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used for loop

termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for statement shall

be a compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The else

keyword shall be followed by either a compound statement, or another if statement.
14.10 All if else if constructs should contain a final else clause.

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype declaration.
16.4* The identifiers used in the declaration and definition of a function shall be identical.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a parenthesized

parameter list, which may be empty.

 Coding Rule Subsets Checked Early in Analysis

8-37

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors directives

or comments.
19.2 Nonstandard characters should not occur in header file names in #include directives.
19.3 The #include directive shall be followed by either a <filename> or "filename" sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized expression,

a type qualifier, a storage class specifier, or a do-while-zero construct.
19.5 Macros shall not be #defined and #undefd within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like preprocessing

directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be enclosed

in parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use, except in

#ifdef and #ifndef preprocessor directives and the defined() operator.
19.12 There shall be at most one occurrence of the # or ## preprocessor operators in a single

macro definition.
19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file being included

twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded by the

preprocessor.
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same file as the

#if or #ifdef directive to which they are related.

8 Configure Coding Rules Checking and Code Metrics Computation

8-38

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be defined,

redefined or undefined.
20.2 The names of standard library macros, objects and functions shall not be reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall not be used.
20.11 The library functions abort, exit, getenv and system from library <stdlib.h> shall

not be used.
20.12 The time handling functions of library <time.h> shall not be used.

The rules that are checked at a system level and appear only in the system-decidable-rules
subset are indicated by an asterisk.

MISRA C:2012 Rules
The software checks the following rules early in the analysis. The rules that are checked at a system
level and appear only in the system-decidable-rules subset are indicated by an asterisk.

Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and constraints, and

shall not exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.3* A project should not contain unused type declarations.
2.4* A project should not contain unused tag declarations.
2.5* A project should not contain unused macro declarations.
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

 Coding Rule Subsets Checked Early in Analysis

8-39

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

Identifiers

Rule Description
5.1* External identifiers shall be distinct.
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in an outer

scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.
5.6* A typedef name shall be a unique identifier.
5.7* A tag name shall be a unique identifier.
5.8* Identifiers that define objects or functions with external linkage shall be unique.
5.9* Identifiers that define objects or functions with internal linkage should be unique.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented in an

unsigned type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is "pointer to

const-qualified char".

8 Configure Coding Rules Checking and Code Metrics Computation

8-40

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.3* All declarations of an object or function shall use the same names and type qualifiers.
8.4 A compatible declaration shall be visible when an object or function with external linkage

is defined.
8.5* An external object or function shall be declared once in one and only one file.
8.6* An identifier with external linkage shall have exactly one external definition.
8.7* Functions and objects should not be defined with external linkage if they are referenced

in only one translation unit.
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage.
8.9* An object should be defined at block scope if its identifier only appears in a single

function.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration constant shall

be unique.
8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of the array

shall be specified explicitly.

 Coding Rule Subsets Checked Early in Analysis

8-41

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in addition

and subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower essential

type or of a different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are performed

shall have the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential type.
10.6 The value of a composite expression shall not be assigned to an object with wider

essential type.
10.7 If a composite expression is used as one operand of an operator in which the usual

arithmetic conversions are performed then the other operand shall not have wider
essential type.

10.8 The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type and any

other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to a

different object type.
11.4 A conversion should not be performed between a pointer to object and an integer type.
11.5 A conversion should not be performed from pointer to void into pointer to object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer arithmetic

type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed to by a

pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer constant.

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-around.

8 Configure Coding Rules Checking and Code Metrics Computation

8-42

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator should have

no other potential side effects other than that caused by the increment or decrement
operator.

13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which has potential

side effects.

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block, or in any

block enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate any

iteration statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a compound

statement.
15.7 All if … else if constructs shall be terminated with an else statement.

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a switch

statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

 Coding Rule Subsets Checked Early in Analysis

8-43

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword between the

[].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

8 Configure Coding Rules Checking and Code Metrics Computation

8-44

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur in a

header file name.
20.3 The #include directive shall be followed by either a <filename> or \"filename\"

sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro argument.
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed in

parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0

or 1.
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing

directives shall be #define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately be followed

by a ## operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself subject to

further macro replacement, shall only be used as an operand to these operators.
20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same file as the

#if, #ifdef or #ifndef directive to which they are related.

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved macro name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall not be

used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

 Coding Rule Subsets Checked Early in Analysis

8-45

The rules that are checked at a system level and appear only in the system-decidable-rules
subset are indicated by an asterisk.

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) | Check MISRA
C:2012 (-misra3)

More About
• “Check for Coding Standard Violations” on page 8-2

8 Configure Coding Rules Checking and Code Metrics Computation

8-46

Create Custom Coding Rules
This example shows how to create a custom coding rules file. You can use this file to check names or
text patterns in your source code against custom rules that you specify. For each rule, you specify a
pattern in the form of a regular expression. The software compares the pattern against identifiers in
the source code and determines whether the custom rule is violated.

The tutorial uses the following code stored in a file printInitialValue.c:

#include <stdio.h>

typedef struct {
 int a;
 int b;
} collection;

void main()
{
 collection myCollection= {0,0};
 printf("Initial values in the collection are %d and %d.",
 myCollection.a,myCollection.b);
}

User Interface (Desktop Products Only)
1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Standards & Code Metrics. Select the Check

custom rules box.
3

Click .

The Findings selection window opens, displaying in the left pane all the coding standards
Polyspace supports, and with the Custom node highlighted.

4 Specify the rules to check for in the right pane.

Expand the 4 Structs node. For the option 4.3 All struct fields must follow the specified
pattern:

Column Title Action
Status Select .
Convention Enter All struct fields must begin

with s_ and have capital letters
or digits

Pattern Enter s_[A-Z0-9_]+
Comment Leave blank. This column is for comments

that appear in the coding rules file alone.
5 Save the file and run the analysis. On the Results List pane, you see two violations of rule 4.3.

Select the first violation.

 Create Custom Coding Rules

8-47

a On the Source pane, the line int a; is marked.
b On the Result Details pane, you see the error message that you had entered, All struct

fields must begin with s_ and have capital letters
6 Right-click the Source pane and select Open Editor. The file printInitialValue.c opens in

the Code Editor pane or an external text editor depending on your Preferences.
7 In the file, replace all instances of a with s_A and b with s_B. Rerun the analysis.

The custom rule violations no longer appear on the Results List pane.

Command Line
With the Polyspace desktop products, you can create a coding standard XML file in the user interface
and then use this file for command-line analysis. Provide this XML file with the option Set checkers
by file (-checkers-selection-file).

With the Polyspace Server products, you have to create a coding standard XML from scratch. Make a
writable copy of the file custom_rules.xml in polyspaceserverroot\help\toolbox
\polyspace_bug_finder_server\examples\coding_standards_XML and turn off rules using
entries in the XML file (all rules from a standard are enabled in the template). Here,
polyspaceserverroot is the root installation folder for the Polyspace Server products, for
instance, C:\Program Files\Polyspace Server\R2019a.

For instance, for custom rule 4.3 to be disabled, the configuration file must contain these lines:

<standard name="CUSTOM RULES">
 ...
 <section name="4 Structs">
 ...
 <check id="4.3" state="off">
 </check>
 ...
 </section>
 ...
</standard>

Provide this file as argument for the option Set checkers by file (-checkers-selection-
file) during analysis, along with the option Check custom rules (-custom-rules). For
instance, for custom rules checking with Polyspace Code Prover Server, enter:

polyspace-code-prover-server -sources file -custom-rules from-file
 -checkers-selection-file custom_rules.xml

See Also
Check custom rules (-custom-rules)

8 Configure Coding Rules Checking and Code Metrics Computation

8-48

Compute Code Complexity Metrics
This example shows how to review the code complexity metrics that Polyspace computes. For
information on the individual metrics, see “Code Metrics” (Polyspace Bug Finder Access).

Polyspace does not compute code complexity metrics by default. To compute them during analysis,
use the option Calculate code metrics (-code-metrics).

After analysis, the software displays project, file and function metrics on the Results List pane. You
can compare the computed metric values against predefined limits. If a metric value exceeds limits,
you can redesign your code to lower the metric value. For instance, if the number of called functions
is high and several of those functions are always called together, you can write one function that
fuses the bodies of those functions. Call that one function instead of the group of functions that are
called together.

Impose Limits on Metrics (Desktop Products Only)
In the user interface of the Polyspace desktop products, open some results with metrics
computations. Then impose limits on the metric values and update results on the Results List pane
to show only metric values that exceed the limits.

1 Select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To use a predefined limit, select Include Quality Objectives Scopes.

The Scope Name list shows the additional option HIS. The option HIS displays the HIS code
metrics on page 8-52 only. Select the option to see the limit values.

• To define your own limits, select New. Save your limits file.

On the left pane, select Code Metric. On the right, select a metric and specify a limit value
for the metric. Other than Comment Density, limit values are upper limits.

To select all metrics in a category such as Function Metrics, select the box next to the
category name. For more information on the metrics categories, see “Code Metrics”
(Polyspace Bug Finder Access). If only a some metrics in a category are selected, the check
box next to the category name displays a symbol.

 Compute Code Complexity Metrics

8-49

3 Select Apply or OK.

The drop-down list in the left of the Results List pane toolbar displays additional options.

• If you use predefined limits, the option HIS appears. This option displays code metrics only.

8 Configure Coding Rules Checking and Code Metrics Computation

8-50

• If you define your own limits, the option corresponding to your limits file name appears.
4 Select the option corresponding to the limits that you want. Only metric values that violate your

limits appear on the Results List pane.
5 Review each violation and decide how to rework your code to avoid the violation.

Note To enforce coding standards across your organization, share your limits file that you saved in
XML format.

People in your organization can use the Open button on the Review Scope tab and navigate to the
location of the XML file.

Impose Limits on Metrics (Server and Access products)
In the Polyspace Access web interface, limits on code complexity metrics are predefined. In the
Dashboard perspective, if you select Code Metric, a Code Metrics window shows the metric values
and limits.

To find the limits used, see “HIS Code Complexity Metrics” on page 8-52.

See Also
Calculate code metrics (-code-metrics)

More About
• “Code Metrics” (Polyspace Bug Finder Access)
• “HIS Code Complexity Metrics” on page 8-52

 Compute Code Complexity Metrics

8-51

HIS Code Complexity Metrics
The following list shows the Hersteller Initiative Software (HIS) standard metrics that Polyspace
evaluates. These metrics and the recommended limits for their values are part of a standard defined
by a major group of Original Equipment Manufacturers or OEMs. For more information on how to
focus your review to this subset of code metrics, see “Compute Code Complexity Metrics” on page 8-
49.

Project
Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit
Number of direct recursions 0
Number of recursions 0

File
Polyspace evaluates the HIS metric, comment density, at the file level. The recommended lower limit
is 20.

Function
Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit
Cyclomatic complexity 10
Language scope 4
Number of call levels 4
Number of calling functions 5
Number of called functions 7
Number of function parameters 5
Number of goto statements 0
Number of instructions 50
Number of paths 80
Number of return statements 1

See Also

More About
• “Compute Code Complexity Metrics” on page 8-49
• “Code Metrics” (Polyspace Bug Finder Access)

8 Configure Coding Rules Checking and Code Metrics Computation

8-52

Configure Bug Finder Checkers

• “Choose Specific Bug Finder Defect Checkers” on page 9-2
• “Modify Default Behavior of Bug Finder Checkers” on page 9-4
• “Flag Deprecated or Unsafe Functions Using Bug Finder Checkers” on page 9-9
• “Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries” on page 9-11
• “Extend Bug Finder Checkers to Find Defects from Specific System Input Values” on page 9-13
• “Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

on page 9-16
• “Extend Checkers for Initialization to Check Function Arguments Passed by Pointers”

on page 9-19
• “Prepare Checkers Configuration for Polyspace Bug Finder Analysis” on page 9-21
• “Short Names of Bug Finder Defect Checkers” on page 9-26
• “Bug Finder Defect Groups” on page 9-40
• “Sources of Tainting in a Polyspace Analysis” on page 9-45
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 9-48
• “Bug Finder Results Found in Fast Analysis Mode” on page 9-53
• “CWE Coding Standard and Polyspace Results” on page 9-78
• “Mapping Between CWE-658 or 659 and Polyspace Results” on page 9-103

9

Choose Specific Bug Finder Defect Checkers
You can check your C/C++ code using the predefined subsets of defect checkers in Bug Finder.
However, you can also customize which defects to check for during the analysis.

You can use a spreadsheet to keep track of the defect checkers that you enable and add notes
explaining why you do not enable the other checkers. A spreadsheet of checkers is provided in
polyspaceroot\polyspace\resources. Here, polyspaceroot is the Polyspace installation
folder, such as C:\Program Files\Polyspace\R2019a.

User Interface (Desktop Products Only)
1 On the Configuration pane, select Bug Finder Analysis.
2 From the Find defects menu, select a set of defects. The options are:

• default for the default list of defects. This list contains defects that are applicable to most
coding projects.

See “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 9-48.
• all for all defects.
• CWE for defects related to CWE coding standard.

For more information, see “CWE Coding Standard and Polyspace Results” on page 9-78.
• custom to add defects to the default list or remove defects from it.

To standardize the bug finding across your organization, you can save your list of defect checkers as a
configuration template and share with others. See “Create Project Using Configuration Template”
(Polyspace Bug Finder).

Command Line
Use the option Find defects (-checkers). Specify a comma-separated list of checkers as
arguments. For instance, to run a Bug Finder analysis on a server with only the data race checkers
enabled, enter:
polyspace-bug-finder-server -sources filename -checkers DATA_RACE,DATA_RACE_STD_LIB

Use short names for the Bug Finder checkers instead of their full names. See “Short Names of Bug
Finder Defect Checkers” on page 9-26.

See Also
Find defects (-checkers)

More About
• “Bug Finder Defect Groups” on page 9-40

9 Configure Bug Finder Checkers

9-2

• “Short Names of Bug Finder Defect Checkers” on page 9-26

 Choose Specific Bug Finder Defect Checkers

9-3

Modify Default Behavior of Bug Finder Checkers
A Polyspace Bug Finder analysis checks C/C++ code for bugs and external coding standard
violations. By default, the Bug Finder checkers are designed to:

• Show as few false positives as possible.
• Require minimal setup upfront.

However, for specific projects, you might want to modify the default behavior of some checkers. For
instance, you might want to treat some user defined data types as effectively boolean or detect data
races involving operations that Bug Finder considers as atomic by default.

Use this topic to find the modifications allowed for Bug Finder checkers. Alternatively, you can search
for these options in the analysis report to see if the default behavior of checkers were modified.

Note that:

• The options do not enable or disable a checker.

To enable or disable specific checkers, see “Choose Specific Bug Finder Defect Checkers” on page
9-2.

• You can use these options solely to modify the behavior of an existing checker.

Options such as target processor type, multitasking options and external constraints can also
modify the behavior of a checker. However, the modification happens as a side effect. You typically
specify these options to accurately reflect your target environment.

Defect Checkers
Option Option Value Checkers Modified Modification
Find defects (-
checkers)

Data race including
atomic operations
(user interface) or
DATA_RACE_ALL
(command line)

Data race By default, the checker
flags data races
involving non-atomic
operations. If an
operation is atomic, it
cannot be interrupted
by operations in another
task or thread. If you
use this option, all
operations are
considered when
flagging data races.

See also “Define Atomic
Operations in
Multitasking Code” on
page 7-24.

9 Configure Bug Finder Checkers

9-4

Option Option Value Checkers Modified Modification
Run stricter
checks considering
all values of
system inputs (-
checks-using-
system-input-
values)

 Checkers that rely on
numerical values of
system inputs

See “Extend Bug Finder
Checkers to Find
Defects from Specific
System Input Values” on
page 9-13.

-code-behavior-
specifications

XML file.

Entries in the XML file
map user-defined
functions to functions
from the Standard
Library.

Checkers that detect
issues with Standard
Library functions

See “Extend Bug Finder
Checkers for Standard
Library Functions to
Custom Libraries” on
page 9-11.

XML file.

Entries in the XML file
map user-defined
concurrency primitives
to ones that Bug Finder
can automatically
detect.

Concurrency defects See “Extend
Concurrency Defect
Checkers to
Unsupported
Multithreading
Environments” on page
9-16.

XML file.

Entries in the XML file
list functions that you
want to prohibit from
your source code.

Use of a forbidden
function

See “Flag Deprecated
or Unsafe Functions
Using Bug Finder
Checkers” on page 9-
9.

XML file.

Entries in the XML file
list functions whose
pointer arguments must
point to initialized
buffers.

Non-initialized
variable

See “Extend Checkers
for Initialization to
Check Function
Arguments Passed by
Pointers” on page 9-
19.

-detect-bad-float-
op-on-zero

 Floating point
comparison with
equality operators

By default, the checker
ignores floating point
comparisons with
equality operators if one
of the operands is 0.0. If
you use this option,
comparisons with 0.0
are also flagged.

 Modify Default Behavior of Bug Finder Checkers

9-5

Option Option Value Checkers Modified Modification
-consider-
analysis-
perimeter-as-
trust-boundary

 Tainted Data Defects By default, the tainted
data defects consider
externally obtained data
as tainted. By using this
option, the following are
also considered as
tainted data:

• Formal parameters
of externally visible
function that do not
have a visible caller.

• Return values of
stubbed functions.

• Global variables
external to the unit.

Coding Standard Checkers
Coding standards checkers can also be extended or modified with appropriate options.

Option Option Value Checkers Modified Modification
Effective boolean
types (-boolean-
types)

Data types • MISRA C:2004 rules
12.6, 13.2, 15.4

• MISRA C:2012 rules
10.1, 10.3, 10.5,
14.4, 16.7

The rules covered by
these checkers involve
boolean types. If you
use this option, you can
treat user-defined types
as effectively boolean.

Allowed pragmas (-
allowed-pragmas)

Names of pragmas MISRA C:2004 rule 3.4
and MISRA C++ rule
16-6-1

These rules require that
all pragma directives
must be documented
within the compiler
documentation. If you
use this option, the
analysis considers the
pragmas specified as
documented pragmas.

9 Configure Bug Finder Checkers

9-6

Option Option Value Checkers Modified Modification
-code-behavior-
specifications

XML file.

Entries in the XML file
define limits on global
aspects of your program
such as maximum depth
of nesting in control
flow statements.

MISRA C: 2012 Rule 1.1 You can increase or
decrease these
parameters of the rule
checker:

• Maximum depth of
nesting allowed in
control flow
statements

• Maximum levels of
inclusion allowed
using include files

• Maximum number of
constants allowed in
an enumeration

• Maximum number of
macros allowed in a
translation unit

• Maximum number of
members allowed in
a structure

• Maximum levels of
nesting allowed in a
structure

XML file.

Entries in the XML file
define how many
characters are
compared before
considering two
identifiers as distinct.

MISRA C: 2012 Rules
5.1 to 5.5

These rules require
uniqueness of certain
types of identifiers. For
instance, rule 5.1
requires that external
identifiers be distinct.

If the difference
between two identifiers
occurs beyond the first
num characters, the rule
checker considers the
identifiers as identical.
You can modify the
parameter num
separately for external
and internal identifiers.

Check Guidelines
(-guidelines)

Thresholds for software
complexity checkers

Software Complexity See “Reduce Software
Complexity by Using
Polyspace Checkers” on
page 8-12

 Modify Default Behavior of Bug Finder Checkers

9-7

See Also

More About
• “Choose Specific Bug Finder Defect Checkers” on page 9-2
• “Bug Finder Defect Groups” on page 9-40

9 Configure Bug Finder Checkers

9-8

Flag Deprecated or Unsafe Functions Using Bug Finder
Checkers

This topic shows how to create a custom list of functions and check for use of these functions in your
code using Polyspace Bug Finder.

Identify Need for Extending Checker
Before creating or extending a checker, identify if an existing checker meets your requirements.
These checkers flag the use of specific functions:

• Use of dangerous standard function: The checker flags functions that introduce the risk
of buffer overflows and have safer alternatives.

• Use of obsolete standard function: The checker flags functions that are deprecated by
the C/C++ standard.

• , Unsafe standard encryption function, Unsafe standard function: The checkers
flag functions that are unsafe to use in security-sensitive contexts.

• Inefficient string length computation, std::endl may cause an unnecessary
flush: The checkers flag functions that can impact performance and have more efficient
alternatives.

However, you might want to blacklist functions that are not covered by an existing checker. For
instance, you might want to forbid the use of signal handling functions such as std::signal:

#include <csignal>
#include <iostream>

namespace
{
 volatile std::sig_atomic_t gSignalStatus;
}

void signal_handler(int signal)
{
 gSignalStatus = signal;
}

int main()
{
 // Install a signal handler
 std::signal(SIGINT, signal_handler);

 std::cout << "SignalValue: " << gSignalStatus << '\n';
 std::cout << "Sending signal " << SIGINT << '\n';
 std::raise(SIGINT);
 std::cout << "SignalValue: " << gSignalStatus << '\n';
}

 Flag Deprecated or Unsafe Functions Using Bug Finder Checkers

9-9

Extend Checker
If the functions that you want to blacklist are not covered by the above checkers, use the checker Use
of a forbidden function. To create a blacklist for the checker:

1 List functions in an XML file in a specific syntax.

Copy the template file code-behavior-specifications-template.xml from the folder
polyspaceroot\polyspace\verifier\cxx to a writable location and modify the file. Enter
each function in the file using the following syntax after existing similar entries:

<function name="funcname">
 <behavior name="FORBIDDEN_FUNC"/>
</function>

where funcname is the name of the function you want to blacklist. Remove previously existing
entries in the file to avoid warnings.

2 Specify this XML file as argument for the option -code-behavior-specifications.

Checkers That Can Be Extended
The only checker that can be used to blacklist specified functions is the checker Use of a
forbidden function.

See Also
-code-behavior-specifications | Use of a forbidden function

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 9-4

9 Configure Bug Finder Checkers

9-10

Extend Bug Finder Checkers for Standard Library Functions to
Custom Libraries

This topic shows how to create checkers for your custom library functions by mapping them to
equivalent functions from the Standard Library.

Identify Need for Extending Checker
If you identify a Bug Finder checker that applies to a Standard Library function and can be extended
to your custom library function, use this technique.

For instance, you might define a math function that has the same domain as a Standard Library math
function. If Bug Finder checks for domain errors when using the Standard Library function, you can
perform the same checks for the equivalent custom function.

Suppose that you define a function acos32 that expects values in the range [-1,1]. You might want to
detect if the function argument falls outside this range at run time, for instance, in this code snippet:

#include<math.h>
#include<float.h>

double acos32(double);
const int periodicity = 1.0;

int isItPeriodic() {
 return(abs(func(0.5) - func(0.5 + periodicity)) < DBL_MIN);
}

double func(double val) {
 return acos32(val);
}

One of the arguments to acos32 is outside its allowed domain. If you do not provide the
implementation of acos32 or if the analysis of the acos32 implementation is not precise, Bug Finder
might not detect the issue. However, the function has the same domain as the Standard Library
function acos. You can extend the checker Invalid use of standard library floating
point routine that detects domain errors in uses of acos to detect the same kinds of errors with
acos32.

If your custom function does not have a constrained domain but returns values in a constrained
range, you can still map the function to an equivalent Standard Library function (if one exists) for
more precise results on other checkers. For instance, you can map a function cos32 that returns
values in the range [-1,1] to the Standard Library function cos.

Extend Checker
You can extend checkers on functions from the Standard Library by mapping those functions to your
custom library functions. For instance, in the preceding example, you can map the function acos32
to the Standard Library function acos.

To perform the mapping:

1 List each mapping in an XML file in a specific syntax.

 Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries

9-11

Copy the template file code-behavior-specifications-template.xml from the folder
polyspaceroot\polyspace\verifier\cxx to a writable location and modify the file. Enter
the mapping in the file using the following syntax after existing similar entries:

<function name="acos32" std="acos"> </function>

Remove previously existing entries in the file to avoid warnings.
2 Specify this XML file as argument for the option -code-behavior-specifications.

Checkers That Can Be Extended
The following checkers can be extended in this way:

• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine

See Also
-code-behavior-specifications

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 9-4

9 Configure Bug Finder Checkers

9-12

Extend Bug Finder Checkers to Find Defects from Specific
System Input Values

This topic shows how to find possible defects from specific values of system inputs. Unlike Code
Prover, Bug Finder does not exhaustively check for run-time errors for all combinations of system
inputs. However, you can extend some Bug Finder checkers and find if there are specific system input
values that can lead to run-time errors.

Identify Need for Extending Checker
First identify if an existing checker is sufficient for your requirements.

For instance, the Bug Finder checker Integer division by zero detects if a division operation
can have a zero denominator. Suppose, a library function has the possibility of a division by zero
following several numerical operations. For instance, consider the function speed here:

#include <assert.h>

int speed(int k) {
 int i,j,v;
 i=2;
 j=k+5;
 while (i <10) {
 i++;
 j+=3;
 }

 v = 1 / (i-j);
 return v+k;
}

Suppose you see a sporadic run-time error when your program execution enters this function and the
default Bug Finder analysis does not detect the issue. To minimize false positives, the default analysis
might suppress issues from specific values of an unknown input (what if this value did not occur in
practice at run time?). See also “Inputs in Polyspace Bug Finder” (Polyspace Bug Finder Access). To
find the root cause of the sporadic error, you can run a stricter Bug Finder analysis for just this
function.

Note that even after extending the checkers, Bug Finder does not provide the sound and exhaustive
analysis of Code Prover. For instance, if Bug Finder does not detect errors after extending the
checkers, this absence of detected errors does not have the same guarantees as green checks in Code
Prover.

Extend Checker
To extend the checker and detect the above issue, use these options:

• Run stricter checks considering all values of system inputs (-checks-using-
system-input-values): Enable this option. Checkers that rely on numerical values can now
consider all input values for functions with at least one callee. You can change which functions are
considered with the next option.

 Extend Bug Finder Checkers to Find Defects from Specific System Input Values

9-13

• Consider inputs to these functions (-system-inputs-from): Use the value custom
and enter the name of the function whose inputs must be considered, in this case, speed. At the
command line, use the option argument custom=speed.

When you run a Bug Finder analysis, you see a possible integer division by zero on the division
operation. The result shows an example of an input value to the function speed that eventually leads
to the current defect (zero value of the denominator).

The tooltips on the defect show how the input value propagates through the code to eventually lead
to one set of values that cause the defect.

9 Configure Bug Finder Checkers

9-14

Checkers That Can Be Extended
The following checkers are affected by numerical values of inputs and can be extended using the
preceding options:

• Array access out of bounds
• Bitwise operation on negative value
• Float conversion overflow
• Float overflow
• Float division by zero
• Integer conversion overflow
• Integer division by zero
• Integer overflow
• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine
• Null pointer
• Shift of a negative value
• Shift operation overflow
• Sign change integer conversion overflow
• Unsigned integer conversion overflow
• Unsigned integer overflow
• Assertion

See Also

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 9-4

 Extend Bug Finder Checkers to Find Defects from Specific System Input Values

9-15

Extend Concurrency Defect Checkers to Unsupported
Multithreading Environments

This topic shows how to adapt concurrency defect checkers to unsupported multithreading
environments, for instance, when a new thread creation is not detected automatically.

Identify Need for Extending Checker
By default, Bug Finder can detect concurrency primitives in certain families only (in Code Prover, the
same automatic detection is available on an option). See “Auto-Detection of Thread Creation and
Critical Section in Polyspace” on page 7-5. If you use primitives that do not belong to one of the
supported families but have similar syntaxes, you can map your thread creation and other
concurrency-related functions to the supported functions.

For instance, the following example uses:

• The function createTask to create a new thread.
• The function takeLock to begin a critical section.
• The function releaseLock to end the critical section.

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);
extern int releaseLock(int* t);
// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t_id1,t_id2;
int lock;

int var1;
int var2;

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

9 Configure Bug Finder Checkers

9-16

Bug Finder does not detect the invocation of createTask as the creation of a new thread where
control flow goes to the start function of the thread (first argument of createTask). The incorrect
placement of the function releaseLock in task2 and the possibility of a data race on the
unprotected shared variable var2 remains undetected.

However, the signature of createTask, takeLock and releaseLock are similar to the
corresponding POSIX functions, pthread_create, pthread_mutex_lock and
pthread_mutex_unlock. The order of arguments of these functions might be different from their
POSIX equivalents.

Extend Checker
Since a POSIX thread creation can be detected automatically, map your thread creation and other
concurrency-related functions to their POSIX equivalents. For instance, in the preceding example,
perform the following mapping:

• createTask → pthread_create
• takeLock → pthread_mutex_lock
• releaseLock → pthread_mutex_unlock

To perform the mapping:

1 List each mapping in an XML file in a specific syntax.

Copy the template file code-behavior-specifications-template.xml from the folder
polyspaceroot\polyspace\verifier\cxx to a writable location and modify the file. Enter
each mapping in the file using the following syntax after existing similar entries:

<function name="createTask" std="pthread_create" >
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="3" arg="1"></mapping>
 <mapping std_arg="2" arg="3"></mapping>
 <mapping std_arg="4" arg="4"></mapping>
</function>
<function name="takeLock" std="pthread_mutex_lock" >
</function>
<function name="releaseLock" std="pthread_mutex_unlock" >
</function>

Note that when mapping createTask to pthread_create, argument remapping is required,
because the arguments do not correspond exactly. For instance, the thread start routine is the
third argument of pthread_create but the first argument of createTask.

Remove previously existing entries in the file to avoid warnings.
2 Specify this XML file as argument for the option -code-behavior-specifications.

If you cannot perform a mapping to one of the supported families of concurrency primitives, you have
to set up the multitasking analysis manually. See “Configuring Polyspace Multitasking Analysis
Manually” on page 7-16.

Checkers That Can Be Extended
The concurrency defect checkers that can be extended in this way are:

 Extend Concurrency Defect Checkers to Unsupported Multithreading Environments

9-17

• Data race
• Double lock and Double unlock
• Missing lock and Missing unlock
• Deadlock

See Also
-code-behavior-specifications

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 9-4

9 Configure Bug Finder Checkers

9-18

Extend Checkers for Initialization to Check Function Arguments
Passed by Pointers

This topic shows how to extend checkers for initialization to check function arguments passed by
pointers. By default, Bug Finder does not check these arguments for initialization at the point of
function call because you might perform the initialization in the function body. However, for specific
functions, you can extend the checkers to check arguments passed by pointers for initialization at the
point of function call.

Identify Need for Existing Checker
Suppose that you consider some function calls as part of the system boundary and you want to make
sure that you pass initialized buffers across the boundary. For instance, the Run-Time environment or
Rte_ functions in AUTOSAR allow a software component to communicate with other software
components. You might want to ensure that pointer arguments to these functions point to initialized
buffers.

For instance, consider this code snippet:

extern void Rte_Write_int(unsigned int, int*);

void writeValueToAddress() {
 const unsigned int module_id = 0xfe;
 int x;
 Rte_Write_int(module_id, &x);
}

The argument x is passed by pointer to the Rte_Write_int function. Bug Finder does not check x
for initialization at the point of function call. In the body of Rte_Write_int, if you attempt to read x,
Bug Finder flags the non-initialized variable. However, you might not be able to provide the module
containing the function body for analysis and might want to detect that x is non-initialized at the
point of function call itself.

Extend Checker
You can specify that pointer arguments to some functions must point to initialized buffers. For
instance, to specify that Rte_Write_int is one such function:

1 List the function in an XML file in a specific syntax.

Copy the template file code-behavior-specifications-template.xml from the folder
polyspaceroot\polyspace\verifier\cxx to a writable location and modify the file. Enter
the function in the file using the following syntax after existing similar entries:

<function name="Rte_Write_int">
 <check name="ARGUMENT_POINTS_TO_INITIALIZED_VALUE" arg="2"/>
</function>

This syntax indicates that Bug Finder must check the second argument of the Rte_Write_int
function to determine if the argument points to an initialized buffer. Remove previously existing
entries in the file to avoid warnings.

You can also use the wildcard * to cover a group of functions. To specify all functions beginning
with Rte_Write_, enter:

 Extend Checkers for Initialization to Check Function Arguments Passed by Pointers

9-19

<function name="Rte_Write_*">
 <check name="ARGUMENT_POINTS_TO_INITIALIZED_VALUE" arg="2"/>
</function>

2 Specify this XML file as argument for the option -code-behavior-specifications.

If you rerun the analysis, you see a Non-initialized variable defect on &x when the function
Rte_Write_int is called.

Checkers That Can Be Extended
The Non-initialized variable checker is extended using this option.

See Also
-code-behavior-specifications

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 9-4

9 Configure Bug Finder Checkers

9-20

Prepare Checkers Configuration for Polyspace Bug Finder
Analysis

Before you incorporate Polyspace as a tool in the software development process of your organization,
first decide how you plan on using Polyspace to improve your code. Choose which source components
to analyze, which issues to check for, and so on. You can then prepare analysis configuration files that
reflect your choices.

Broadly speaking, a Bug Finder analysis configuration consists of two parts:

• Build configuration including sources and target
• Checkers configuration

This topic describes a workflow for creating your checkers configuration in a typical deployment
scenario. You can adapt this workflow to the specific requirements of your project or organization.

Identify Checkers to Enable
Suppose that you want to establish certain coding standards across your organization. You might
follow one of several approaches:

• Adhere to an external coding standard.

If Bug Finder supports the coding standard, you can select the standard and a predefined or
custom set of rules from the standard.

Polyspace supports these external standards directly. For these standards, simply enable the
standard in your configuration and start analysis.

• MISRA C:2004
• MISRA C:2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT C (Bug Finder only)
• CERT C++ (Bug Finder only)
• ISO/IEC TS 17961 (Bug Finder only)
• Guidelines (Bug Finder only)

See “Check for Coding Standard Violations” on page 8-2.

 Prepare Checkers Configuration for Polyspace Bug Finder Analysis

9-21

• Develop a set of in-house coding rules based on external standards and prior issues found.

See if you can automate checking of those rules through Bug Finder defect checkers and/or
external coding standard checkers.

One way to locate a potential checker is to search by keywords in the documentation. Suppose you
want to detect issues that can arise from use of variadic functions.

1 Search for keywords such as variadic or va_arg and refine search results by product to
Bug Finder and then by category to Review Analysis Results > Polyspace Bug Finder
Results.

2 Identify all checkers related to variadic functions. Note down the checkers that you want to
enable. See if there is an overlap between checkers and eliminate duplicates.

You can record each defect checker that you enabled or disabled for your process requirements.
You can start from the spreadsheet of checkers in polyspaceroot\polyspace\resources\. In
the Your Notes column, note down your rationale for enabling or disabling a checker.

• Check only for defects (bugs) that are most likely to cause errors at run time.

You might not be following standard coding practices in your organization and you might find
external coding standards too sweeping for your preferences.

9 Configure Bug Finder Checkers

9-22

Start from the Bug Finder defect checkers and identify a subset of checkers for which you want to
have zero unjustified defects. One way to identify this subset can be the following:

• First select defect checkers with high impact. These checkers can find issues that are likely to
have serious consequences.

See also “Classification of Defects by Impact” (Polyspace Bug Finder Access).
• Run a first pass of Bug Finder analysis with high impact checkers and identify checkers that

produce too much noise that you do not want to address immediately. You can disable these
checkers for your initial deployment.

See also “Choose Specific Bug Finder Defect Checkers” on page 9-2.

You can follow a similar strategy with checkers for external coding standards. For instance, for
MISRA C:2012, you can start from the mandatory or required guidelines and then choose to
expand later.

At the end of this process, you have identified some checkers to enable in a Polyspace analysis. These
checkers can be all defect (bug) checkers, or all checkers from external coding standards, or a mix of
the two. The next section describes how to create checkers configuration files that you can deploy to
your developers.

Create Checkers Configuration Files
A Polyspace Bug Finder analysis configuration is a list of analysis options specified using command-
line flags. You can store the entire configuration in one options file, for instance, a text file named
allOptions.txt, and specify the file using -options-file like this:

polyspace-bug-finder -options-file allOptions.txt

Or like this:

polyspace-bug-finder-server -options-file allOptions.txt

For your convenience, you can split the configuration into three parts:

 Prepare Checkers Configuration for Polyspace Bug Finder Analysis

9-23

• Build configuration (sources, targets, and so on).

Suppose that you save all options related to your build in a file buildOptions.txt. You can
create this file manually or automatically from your build command (makefile).

For more information on how to create this file, see “Prepare Scripts for Polyspace Analysis” on
page 1-2.

• Defect checkers configuration.

Suppose that you specify defect checkers in a file defectCheckers.txt.
• External coding standard configuration.

Suppose that you specify a coding standard and associated checkers in a file
externalRuleCheckers.txt.

You can string the files together in a run command like this:

polyspace-bug-finder
 -options-file buildOptions.txt
 -options-file defectCheckers.txt
 -options-file externalRuleCheckers.txt

This command combines the contents of all options files into one file. The splitting of one options file
into several files has some advantages. By splitting into separate options files, you can, for instance,
reuse the defect checkers configuration across projects while creating a build configuration
individually for each project.

You have to then create the text files that specify the checkers that you choose to enable:

• The file defectCheckers.txt contains -checkers followed by a comma-separated list of the
defect checkers that you choose to enable. For instance:

-checkers
 INT_ZERO_DIV,
 FLOAT_ZERO_DIV,
...

See also:

• Find defects (-checkers)
• “Short Names of Bug Finder Defect Checkers” on page 9-26

• The file externalRuleCheckers.txt contains the coding standards that you want to enable and
then refers to a separate XML file for specific rules from the standards.

For instance, a text file that enables specific rules from the MISRA C:2012 and AUTOSAR C++14
standard contains these options:

-misra3 from-file
-autosar-cpp14 from-file
-checkers-selection-file externalRuleCheckers.xml

The XML file externalRuleCheckers.xml that enables or disables checkers for rules from
specific standards has this structure:

9 Configure Bug Finder Checkers

9-24

<polyspace_checkers_selection>
 <standard name="MISRA C:2004" state="off"/>
 <standard name="MISRA AC AGC" state="off"/>
 <standard name="MISRA C:2012" state="off"/>
 <standard name="MISRA C++:2008" state="off"/>
 <standard name="JSF AV C++" state="off"/>
 <standard name="SEI CERT C" state="off"/>
 <standard name="SEI CERT C++" state="off"/>
 <standard name="ISO/IEC TS 17961" state="off"/>
 <standard name="AUTOSAR C++14">
 <section name="0 Language independent issues">
 <check id="M0-1-1" state="on"/>
 <check id="M0-1-2" state="on"/>
 <check id="M0-1-3" state="off"/>
 <check id="M0-1-4" state="on">
 <comment>Not implemented</comment>
 </check>
 <check id="A0-1-1" state="on">
 <comment>Not implemented</comment>
 </check>
 <check id="A0-1-2" state="on"/>
 <check id="M0-1-8" state="on">
 <comment>Not implemented</comment>
 </check>
 .
 .
 </section>
 </standard>
</polyspace_checkers_selection>

For more information on how to create the XML file, see “Check for Coding Standard Violations”
on page 8-2.

You can create these files and use the final Polyspace run command in scripts. For instance:

• In a Jenkins build, you can specify the run command in a build script, along with other tools that
you are running. After code submission, the Polyspace analysis can run on newly submitted code
through the build scripts.

• In developer IDEs, you can specify the run command through a menu item that runs external
tools. Developers can run the Polyspace analysis during coding by using the external tools.

Creating these options files by hand can be prone to errors. If you have a license of the desktop
product, Polyspace Bug Finder, you can generate these files from the Polyspace user interface. See
also “Configure Polyspace Analysis Options in User Interface and Generate Scripts” on page 1-14.

See Also

More About
• “Choose Specific Bug Finder Defect Checkers” on page 9-2
• “Check for Coding Standard Violations” on page 8-2

 Prepare Checkers Configuration for Polyspace Bug Finder Analysis

9-25

Short Names of Bug Finder Defect Checkers
To justify defects through code annotations, use the command-line names, or short names, listed in
the following table.

You can also enable the detection of a specific defect by using its short name as argument of the -
checkers option. Instead of listing individual defects, you can also specify groups of defects by the
group name, for instance, numerical, data_flow, and so on. See Find defects (-checkers).

Defect Command-line Name
*this not returned in copy
assignment operator

RETURN_NOT_REF_TO_THIS

A move operation may throw MOVE_OPERATION_MAY_THROW
Abnormal termination of exit
handler

EXIT_ABNORMAL_HANDLER

Absorption of float operand FLOAT_ABSORPTION
Accessing object with
temporary lifetime

TEMP_OBJECT_ACCESS

Alignment changed after
memory reallocation

ALIGNMENT_CHANGE

Alternating input and output
from a stream without flush
or positioning call

IO_INTERLEAVING

Ambiguous declaration syntax MOST_VEXING_PARSE
Arithmetic operation with
NULL pointer

NULL_PTR_ARITH

Array access out of bounds OUT_BOUND_ARRAY
Array access with tainted
index

TAINTED_ARRAY_INDEX

Assertion ASSERT
Asynchronously cancellable
thread

ASYNCHRONOUSLY_CANCELLABLE_THREAD

Atomic load and store
sequence not atomic

ATOMIC_VAR_SEQUENCE_NOT_ATOMIC

Atomic variable accessed
twice in an expression

ATOMIC_VAR_ACCESS_TWICE

Automatic or thread local
variable escaping from a
thread

LOCAL_ADDR_ESCAPE_THREAD

Bad file access mode or
status

BAD_FILE_ACCESS_MODE_STATUS

Bad order of dropping
privileges

BAD_PRIVILEGE_DROP_ORDER

9 Configure Bug Finder Checkers

9-26

Defect Command-line Name
Base class assignment
operator not called

MISSING_BASE_ASSIGN_OP_CALL

Base class destructor not
virtual

DTOR_NOT_VIRTUAL

Bitwise and arithmetic
operation on the same data

BITWISE_ARITH_MIX

Bitwise operation on
negative value

BITWISE_NEG

Blocking operation while
holding lock

BLOCKING_WHILE_LOCKED

Buffer overflow from
incorrect string format
specifier

STR_FORMAT_BUFFER_OVERFLOW

Bytewise operations on
nontrivial class object

MEMOP_ON_NONTRIVIAL_OBJ

C++ reference to const-
qualified type with
subsequent modification

WRITE_REFERENCE_TO_CONST_TYPE

C++ reference type qualified
with const or volatile

CV_QUALIFIED_REFERENCE_TYPE

Call through non-prototyped
function pointer

UNPROTOTYPED_FUNC_CALL

Call to memset with
unintended value

MEMSET_INVALID_VALUE

Character value absorbed
into EOF

CHAR_EOF_CONFUSED

Closing a previously closed
resource

DOUBLE_RESOURCE_CLOSE

Code deactivated by constant
false condition

DEACTIVATED_CODE

Command executed from
externally controlled path

TAINTED_PATH_CMD

Const parameter values may
cause unnecessary data
copies

CONST_PARAMETER_VALUE

Const return values may
cause unnecessary data
copies

CONST_RETURN_VALUE

Const rvalue reference
parameter may cause
unnecessary data copies

CONST_RVALUE_REFERENCE_PARAMETER

 Short Names of Bug Finder Defect Checkers

9-27

Defect Command-line Name
Const std::move input may
cause a more expensive
object copy

EXPENSIVE_STD_MOVE_CONST_OBJECT

Constant block cipher
initialization vector

CRYPTO_CIPHER_CONSTANT_IV

Constant cipher key CRYPTO_CIPHER_CONSTANT_KEY
Context initialized
incorrectly for
cryptographic operation

CRYPTO_PKEY_INCORRECT_INIT

Context initialized
incorrectly for digest
operation

CRYPTO_MD_BAD_FUNCTION

Conversion or deletion of
incomplete class pointer

INCOMPLETE_CLASS_PTR

Copy constructor not called
in initialization list

MISSING_COPY_CTOR_CALL

Copy of overlapping memory OVERLAPPING_COPY
Copy operation modifying
source operand

COPY_MODIFYING_SOURCE

Data race DATA_RACE
Data race including atomic
operations

DATA_RACE_ALL

Data race on adjacent bit
fields

DATA_RACE_BIT_FIELDS

Data race through standard
library function call

DATA_RACE_STD_LIB

Dead code DEAD_CODE
Deadlock DEADLOCK
Deallocation of previously
deallocated pointer

DOUBLE_DEALLOCATION

Declaration mismatch DECL_MISMATCH
Delete of void pointer DELETE_OF_VOID_PTR
Destination buffer overflow
in string manipulation

STRLIB_BUFFER_OVERFLOW

Destination buffer underflow
in string manipulation

STRLIB_BUFFER_UNDERFLOW

Destruction of locked mutex DESTROY_LOCKED
Deterministic random output
from constant seed

RAND_SEED_CONSTANT

Double lock DOUBLE_LOCK
Double unlock DOUBLE_UNLOCK

9 Configure Bug Finder Checkers

9-28

Defect Command-line Name
Empty destructors may cause
unnecessary data copies

EMPTY_DESTRUCTOR_DEFINED

Environment pointer
invalidated by previous
operation

INVALID_ENV_POINTER

Errno not checked ERRNO_NOT_CHECKED
Errno not reset MISSING_ERRNO_RESET
Exception caught by value EXCP_CAUGHT_BY_VALUE
Exception handler hidden by
previous handler

EXCP_HANDLER_HIDDEN

Execution of a binary from a
relative path can be
controlled by an external
actor

RELATIVE_PATH_CMD

Execution of externally
controlled command

TAINTED_EXTERNAL_CMD

Expensive c_str() to
std::string construction

EXPENSIVE_C_STR_STD_STRING_CONSTRUCTION

Expensive constant
std::string construction

EXPENSIVE_CONSTANT_STD_STRING

Expensive copy in a range-
based for loop iteration

EXPENSIVE_RANGE_BASED_FOR_LOOP_ITERATION

Expensive local variable
copy

EXPENSIVE_LOCAL_VARIABLE

Expensive logical operation EXPENSIVE_LOGICAL_OPERATION
Expensive pass by value EXPENSIVE_PASS_BY_VALUE
Expensive return by value EXPENSIVE_RETURN_BY_VALUE
Expensive use of non-member
std::string operator+()
instead of a simple append

EXPENSIVE_STD_STRING_APPEND

Expensive use of std::string
methods instead of more
efficient overload

EXPENSIVE_USE_OF_STD_STRING_METHODS

Expensive use of std::string
with empty string literal

UNNECESSARY_EMPTY_STRING_LITERAL

File access between time of
check and use (TOCTOU)

TOCTOU

File descriptor exposure to
child process

FILE_EXPOSURE_TO_CHILD

File does not compile file_does_not_compile
File manipulation after
chroot without chdir

CHROOT_MISUSE

 Short Names of Bug Finder Defect Checkers

9-29

Defect Command-line Name
Float conversion overflow FLOAT_CONV_OVFL
Float division by zero FLOAT_ZERO_DIV
Floating point comparison
with equality operators

BAD_FLOAT_OP

Float overflow FLOAT_OVFL
Format string specifiers and
arguments mismatch

STRING_FORMAT

Function called from signal
handler not asynchronous-
safe

SIG_HANDLER_ASYNC_UNSAFE

Function called from signal
handler not asynchronous-
safe (strict)

SIG_HANDLER_ASYNC_UNSAFE_STRICT

Function pointer assigned
with absolute address

FUNC_PTR_ABSOLUTE_ADDR

Function that can spuriously
fail not wrapped in loop

SPURIOUS_FAILURE_NOT_WRAPPED_IN_LOOP

Function that can spuriously
wake up not wrapped in loop

SPURIOUS_WAKEUP_NOT_WRAPPED_IN_LOOP

Hard-coded buffer size HARD_CODED_BUFFER_SIZE
Hard-coded loop boundary HARD_CODED_LOOP_BOUNDARY
Hard-coded object size used
to manipulate memory

HARD_CODED_MEM_SIZE

Hard-coded sensitive data HARD_CODED_SENSITIVE_DATA
Host change using externally
controlled elements

TAINTED_HOSTID

Improper array
initialization

IMPROPER_ARRAY_INIT

Inappropriate I/O operation
on device files

INAPPROPRIATE_IO_ON_DEVICE

Incompatible padding for RSA
algorithm operation

CRYPTO_RSA_BAD_PADDING

Incompatible types prevent
overriding

VIRTUAL_FUNC_HIDING

Inconsistent cipher
operations

CRYPTO_CIPHER_BAD_FUNCTION

Incorrect data type passed
to va_arg

VA_ARG_INCORRECT_TYPE

Incorrect key for
cryptographic algorithm

CRYPTO_PKEY_INCORRECT_KEY

Incorrect order of network
connection operations

BAD_NETWORK_CONNECT_ORDER

9 Configure Bug Finder Checkers

9-30

Defect Command-line Name
Incorrect pointer scaling BAD_PTR_SCALING
Incorrect type data passed
to va_start

VA_START_INCORRECT_TYPE

Incorrect use of offsetof in
C++

OFFSETOF_MISUSE

Incorrect use of va_start VA_START_MISUSE
Incorrect value forwarding INCORRECT_VALUE_FORWARDING
Incorrect syntax of flexible
array member size

FLEXIBLE_ARRAY_MEMBER_INCORRECT_SIZE

Incorrectly indented
statement

INCORRECT_INDENTATION

Inefficient string length
computation

INEFFICIENT_BASIC_STRING_LENGTH

Information leak via
structure padding

PADDING_INFO_LEAK

Inline constraint not
respected

INLINE_CONSTRAINT_NOT_RESPECTED

Integer constant overflow INT_CONSTANT_OVFL
Integer conversion overflow INT_CONV_OVFL
Integer division by zero INT_ZERO_DIV
Integer overflow INT_OVFL
Integer precision exceeded INT_PRECISION_EXCEEDED
Invalid assumptions about
memory organization

INVALID_MEMORY_ASSUMPTION

Invalid deletion of pointer BAD_DELETE
Invalid file position INVALID_FILE_POS
Invalid free of pointer BAD_FREE
Invalid use of =
(assignment) operator

BAD_EQUAL_USE

Invalid use of == (equality)
operator

BAD_EQUAL_EQUAL_USE

Invalid use of standard
library floating point
routine

FLOAT_STD_LIB

Invalid use of standard
library integer routine

INT_STD_LIB

Invalid use of standard
library memory routine

MEM_STD_LIB

Invalid use of standard
library routine

OTHER_STD_LIB

 Short Names of Bug Finder Defect Checkers

9-31

Defect Command-line Name
Invalid use of standard
library string routine

STR_STD_LIB

Invalid va_list argument INVALID_VA_LIST_ARG
Join or detach of a joined
or detached thread

DOUBLE_JOIN_OR_DETACH

Lambda used as typeid
operand

LAMBDA_TYPE_MISUSE

Library loaded from
externally controlled path

TAINTED_PATH_LIB

Line with more than one
statement

MORE_THAN_ONE_STATEMENT

Load of library from a
relative path can be
controlled by an external
actor

RELATIVE_PATH_LIB

Loop bounded with tainted
value

TAINTED_LOOP_BOUNDARY

Macro terminated with a
semicolon

SEMICOLON_TERMINATED_MACRO

Macro with multiple
statements

MULTI_STMT_MACRO

Member not initialized in
constructor

NON_INIT_MEMBER

Memory allocation with
tainted size

TAINTED_MEMORY_ALLOC_SIZE

Memory comparison of float-
point values

MEMCMP_FLOAT

Memory comparison of padding
data

MEMCMP_PADDING_DATA

Memory comparison of strings MEMCMP_STRINGS
Memory leak MEM_LEAK
Mismatch between data length
and size

DATA_LENGTH_MISMATCH

Mismatched alloc/dealloc
functions on Windows

WIN_MISMATCH_DEALLOC

Missing blinding for RSA
algorithm

CRYPTO_RSA_NO_BLINDING

Missing block cipher
initialization vector

CRYPTO_CIPHER_NO_IV

Missing break of switch case MISSING_SWITCH_BREAK
Missing byte reordering when
transferring data

MISSING_BYTESWAP

9 Configure Bug Finder Checkers

9-32

Defect Command-line Name
Missing case for switch
condition

MISSING_SWITCH_CASE

Missing certification
authority list

CRYPTO_SSL_NO_CA

Missing cipher algorithm CRYPTO_CIPHER_NO_ALGORITHM
Missing cipher data to
process

CRYPTO_CIPHER_NO_DATA

Missing cipher final step CRYPTO_CIPHER_NO_FINAL
Missing cipher key CRYPTO_CIPHER_NO_KEY
Missing constexpr specifier MISSING_CONSTEXPR
Missing data for encryption,
decryption or signing
operation

CRYPTO_PKEY_NO_DATA

Missing explicit keyword MISSING_EXPLICIT_KEYWORD
Missing final step after
hashing update operation

CRYPTO_MD_NO_FINAL

Missing hash algorithm CRYPTO_MD_NO_ALGORITHM
Missing lock BAD_UNLOCK
Missing null in string array MISSING_NULL_CHAR
Missing or double
initialization of thread
attribute

BAD_THREAD_ATTRIBUTE

Missing overload of
allocation or deallocation
function

MISSING_OVERLOAD_NEW_DELETE_PAIR

Missing padding for RSA
algorithm

CRYPTO_RSA_NO_PADDING

Missing parameters for key
generation

CRYPTO_PKEY_NO_PARAMS

Missing peer key CRYPTO_PKEY_NO_PEER
Missing private key CRYPTO_PKEY_NO_PRIVATE_KEY
Missing private key for
X.509 certificate

CRYPTO_SSL_NO_PRIVATE_KEY

Missing public key CRYPTO_PKEY_NO_PUBLIC_KEY
Missing reset of a freed
pointer

MISSING_FREED_PTR_RESET

Missing return statement MISSING_RETURN
Missing salt for hashing
operation

CRYPTO_MD_NO_SALT

Missing unlock BAD_LOCK
Missing virtual inheritance MISSING_VIRTUAL_INHERITANCE

 Short Names of Bug Finder Defect Checkers

9-33

Defect Command-line Name
Missing X.509 certificate CRYPTO_SSL_NO_CERTIFICATE
Misuse of a FILE object FILE_OBJECT_MISUSE
Misuse of errno ERRNO_MISUSE
Misuse of errno in a signal
handler

SIG_HANDLER_ERRNO_MISUSE

Misuse of narrow or wide
character string

NARROW_WIDE_STR_MISUSE

Misuse of readlink() READLINK_MISUSE
Misuse of return value from
nonreentrant standard
function

NON_REENTRANT_STD_RETURN

Misuse of sign-extended
character value

CHARACTER_MISUSE

Misuse of structure with
flexible array member

FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE

Modification of internal
buffer returned from
nonreentrant standard
function

WRITE_INTERNAL_BUFFER_RETURNED_FROM_STD_FUNC

Move operation on const
object

MOVE_CONST_OBJECT

Multiple mutexes used with
same conditional variable

MULTI_MUTEX_WITH_ONE_COND_VAR

Multiple threads waiting on
same condition variable

SIGNALED_COND_VAR_NOT_UNIQUE

No data added into context CRYPTO_MD_NO_DATA
Noexcept function exits with
exception

NOEXCEPT_FUNCTION_THROWS

Non-compliance with AUTOSAR
specification

autosar_lib_non_compliance

Non-initialized pointer NON_INIT_PTR
Non-initialized variable NON_INIT_VAR
Nonsecure hash algorithm CRYPTO_MD_WEAK_HASH
Nonsecure parameters for key
generation

CRYPTO_PKEY_WEAK_PARAMS

Nonsecure RSA public
exponent

CRYPTO_RSA_LOW_EXPONENT

Nonsecure SSL/TLS protocol CRYPTO_SSL_WEAK_PROTOCOL
Null pointer NULL_PTR
Object slicing OBJECT_SLICING

9 Configure Bug Finder Checkers

9-34

Defect Command-line Name
Opening previously opened
resource

DOUBLE_RESOURCE_OPEN

Operator new not overloaded
for possibly overaligned
class

MISSING_OVERLOAD_NEW_FOR_ALIGNED_OBJ

Overlapping assignment OVERLAPPING_ASSIGN
Partially accessed array PARTIALLY_ACCESSED_ARRAY
Partial override of
overloaded virtual functions

PARTIAL_OVERRIDE

Pointer access out of bounds OUT_BOUND_PTR
Pointer dereference with
tainted offset

TAINTED_PTR_OFFSET

Pointer or reference to
stack variable leaving scope

LOCAL_ADDR_ESCAPE

Pointer to non-initialized
value converted to const
pointer

NON_INIT_PTR_CONV

Possible invalid operation
on boolean operand

INVALID_OPERATION_ON_BOOLEAN

Possible misuse of sizeof SIZEOF_MISUSE
Possibly inappropriate data
type for switch expression

INAPPROPRIATE_TYPE_IN_SWITCH

Possibly unintended
evaluation of expression
because of operator
precedence rules

OPERATOR_PRECEDENCE

Precision loss in integer to
float conversion

INT_TO_FLOAT_PRECISION_LOSS

Predefined macro used as an
object

MACRO_USED_AS_OBJECT

Predictable block cipher
initialization vector

CRYPTO_CIPHER_PREDICTABLE_IV

Predictable cipher key CRYPTO_CIPHER_PREDICTABLE_KEY
Predictable random output
from predictable seed

RAND_SEED_PREDICTABLE

Preprocessor directive in
macro argument

PRE_DIRECTIVE_MACRO_ARG

Privilege drop not verified MISSING_PRIVILEGE_DROP_CHECK
Qualifier removed in
conversion

QUALIFIER_MISMATCH

Redundant expression in
sizeof operand

SIZEOF_USELESS_OP

 Short Names of Bug Finder Defect Checkers

9-35

Defect Command-line Name
Resource leak RESOURCE_LEAK
Returned value of a
sensitive function not
checked

RETURN_NOT_CHECKED

Return from computational
exception signal handler

SIG_HANDLER_COMP_EXCP_RETURN

Return of non const handle
to encapsulated data member

BREAKING_DATA_ENCAPSULATION

Self assignment not tested
in operator

MISSING_SELF_ASSIGN_TEST

Semicolon on same line as
if, for or while statement

SEMICOLON_CTRL_STMT_SAME_LINE

Sensitive data printed out SENSITIVE_DATA_PRINT
Sensitive heap memory not
cleared before release

SENSITIVE_HEAP_NOT_CLEARED

Server certificate common
name not checked

CRYPTO_SSL_HOSTNAME_NOT_CHECKED

Shared data access within
signal handler

SIG_HANDLER_SHARED_OBJECT

Shift of a negative value SHIFT_NEG
Shift operation overflow SHIFT_OVFL
Side effect in arguments to
unsafe macro

SIDE_EFFECT_IN_UNSAFE_MACRO_ARG

Side effect of expression
ignored

SIDE_EFFECT_IGNORED

Signal call from within
signal handler

SIG_HANDLER_CALLING_SIGNAL

Signal call in multithreaded
program

SIGNAL_USE_IN_MULTITHREADED_PROGRAM

Sign change integer
conversion overflow

SIGN_CHANGE

Standard function call with
incorrect arguments

STD_FUNC_ARG_MISMATCH

Static uncalled function UNCALLED_FUNC
std::endl may cause an
unnecessary flush

STD_ENDL_USE

std::move called on an
unmovable type

STD_MOVE_UNMOVABLE_TYPE

Stream argument with
possibly unintended side
effects

STREAM_WITH_SIDE_EFFECT

9 Configure Bug Finder Checkers

9-36

Defect Command-line Name
Subtraction or comparison
between pointers to
different arrays

PTR_TO_DIFF_ARRAY

Tainted division operand TAINTED_INT_DIVISION
Tainted modulo operand TAINTED_INT_MOD
Tainted NULL or non-null-
terminated string

TAINTED_STRING

Tainted sign change
conversion

TAINTED_SIGN_CHANGE

Tainted size of variable
length array

TAINTED_VLA_SIZE

Tainted string format TAINTED_STRING_FORMAT
Thread-specific memory leak THREAD_MEM_LEAK
Throw argument raises
unexpected exception

THROW_ARGUMENT_EXPRESSION_THROWS

TLS/SSL connection method
not set

CRYPTO_SSL_NO_ROLE

TLS/SSL connection method
set incorrectly

CRYPTO_SSL_BAD_ROLE

Too many va_arg calls for
current argument list

TOO_MANY_VA_ARG_CALLS

Typedef mismatch TYPEDEF_MISMATCH
Umask used with chmod-style
arguments

BAD_UMASK

Uncleared sensitive data in
stack

SENSITIVE_STACK_NOT_CLEARED

Universal character name
from token concatenation

PRE_UCNAME_JOIN_TOKENS

Unmodified variable not
const-qualified

UNMODIFIED_VAR_NOT_CONST

Unnamed namespace in header
file

UNNAMED_NAMESPACE_IN_HEADER

Unprotected dynamic memory
allocation

UNPROTECTED_MEMORY_ALLOCATION

Unreachable code UNREACHABLE
Unreliable cast of function
pointer

FUNC_CAST

Unreliable cast of pointer PTR_CAST
Unsafe call to a system
function

UNSAFE_SYSTEM_CALL

 Short Names of Bug Finder Defect Checkers

9-37

Defect Command-line Name
Unsafe conversion between
pointer and integer

BAD_INT_PTR_CAST

Unsafe conversion from
string to numerical value

UNSAFE_STR_TO_NUMERIC

Unsafe standard encryption
function

UNSAFE_STD_CRYPT

Unsafe standard function UNSAFE_STD_FUNC
Unsigned integer constant
overflow

UINT_CONSTANT_OVFL

Unsigned integer conversion
overflow

UINT_CONV_OVFL

Unsigned integer overflow UINT_OVFL
Unused parameter UNUSED_PARAMETER
Use of a forbidden function FORBIDDEN_FUNC
Useless if USELESS_IF
Use of automatic variable as
putenv-family function
argument

PUTENV_AUTO_VAR

Use of dangerous standard
function

DANGEROUS_STD_FUNC

Use of externally controlled
environment variable

TAINTED_ENV_VARIABLE

Use of indeterminate string INDETERMINATE_STRING
Use of new or make_unique
instead of more efficient
make_shared

MISSING_MAKE_SHARED

Use of memset with size
argument zero

MEMSET_INVALID_SIZE

Use of non-secure temporary
file

NON_SECURE_TEMP_FILE

Use of obsolete standard
function

OBSOLETE_STD_FUNC

Use of path manipulation
function without maximum
sized buffer checking

PATH_BUFFER_OVERFLOW

Use of plain char type for
numerical value

BAD_PLAIN_CHAR_USE

Use of previously closed
resource

CLOSED_RESOURCE_USE

Use of previously freed
pointer

FREED_PTR

Use of tainted pointer TAINTED_PTR

9 Configure Bug Finder Checkers

9-38

Defect Command-line Name
Use of setjmp/longjmp SETJMP_LONGJMP_USE
Use of undefined thread ID UNDEFINED_THREAD_ID
Use of signal to kill thread THREAD_KILLED_WITH_SIGNAL
Variable length array with
nonpositive size

NON_POSITIVE_VLA_SIZE

Variable shadowing VAR_SHADOWING
Vulnerable path manipulation PATH_TRAVERSAL
Vulnerable permission
assignments

DANGEROUS_PERMISSIONS

Vulnerable pseudo-random
number generator

VULNERABLE_PRNG

Weak cipher algorithm CRYPTO_CIPHER_WEAK_CIPHER
Weak cipher mode CRYPTO_CIPHER_WEAK_MODE
Weak padding for RSA
algorithm

CRYPTO_RSA_WEAK_PADDING

Write without a further read USELESS_WRITE
Writing to const qualified
object

CONSTANT_OBJECT_WRITE

Writing to read-only
resource

READ_ONLY_RESOURCE_WRITE

Wrong allocated object size
for cast

OBJECT_SIZE_MISMATCH

Wrong type used in sizeof PTR_SIZEOF_MISMATCH
X.509 peer certificate not
checked

CRYPTO_SSL_CERT_NOT_CHECKED

See Also

More About
• “Choose Specific Bug Finder Defect Checkers” on page 9-2

 Short Names of Bug Finder Defect Checkers

9-39

Bug Finder Defect Groups

In this section...
“C++ Exceptions” on page 9-40
“Concurrency” on page 9-40
“Cryptography” on page 9-41
“Data flow” on page 9-41
“Dynamic Memory” on page 9-42
“Good Practice” on page 9-42
“Numerical” on page 9-42
“Object Oriented” on page 9-42
“Performance” on page 9-43
“Programming” on page 9-43
“Resource Management” on page 9-43
“Static Memory” on page 9-43
“Security” on page 9-44
“Tainted data” on page 9-44

For convenience, the defect checkers in Bug Finder are classified into various groups.

• In certain projects, you can choose to focus only on specific groups of defects. Specify the group
name for the option Find defects (-checkers).

• When reviewing results, you can review all results of a certain group together. Filter out other
results during review. See “Manage Results” (Polyspace Bug Finder Access).

This topic gives an overview of the various groups.

C++ Exceptions
These defects are related to C++ exception handling. The defects include:

• Unhandled exception emitting from a noexcept function
• Unexpected exception arising during constructing the argument object of a throw statement
• catch statements catching exceptions by value instead of by reference
• catch statements hiding subsequent catch statements.

For more details about specific defects, see

Command-Line Parameter: cpp_exceptions

Concurrency
These defects are related to multitasking code.

9 Configure Bug Finder Checkers

9-40

Data Race Defects

The data race defects occur when multiple tasks operate on a shared variable or call a nonreentrant
standard library function without protection.

For the specific defects, see “Concurrency Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: concurrency

Locking Defects

The locking defects occur when the critical sections are not set up appropriately. For example:

• The critical sections are involved in a deadlock.
• A lock function does not have the corresponding unlock function.
• A lock function is called twice without an intermediate call to an unlock function.

Critical sections protect shared variables from concurrent access. Polyspace expects critical sections
to follow a certain format. The critical section must lie between a call to a lock function and a call to
an unlock function.

For the specific defects, see “Concurrency Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: concurrency

Cryptography
These defects are related to incorrect use of cryptography routines from the OpenSSL library. For
instance:

• Use of cryptographically weak algorithms
• Absence of essential elements such as cipher key or initialization vector
• Wrong order of cryptographic operations

For the specific defects, see “Cryptography Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: cryptography

Data flow
These defects are errors relating to how information moves throughout your code. The defects
include:

• Dead or unreachable code
• Unused code
• Non-initialized information

For the specific defects, see “Data Flow Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: data_flow

 Bug Finder Defect Groups

9-41

Dynamic Memory
These defects are errors relating to memory usage when the memory is dynamically allocated. The
defects include:

• Freeing dynamically allocated memory
• Unprotected memory allocations

For specific defects, see “Dynamic Memory Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: dynamic_memory

Good Practice
These defects allow you to observe good coding practices. The defects by themselves might not cause
a crash, but they sometimes highlight more serious logic errors in your code. The defects also make
your code vulnerable to attacks and hard to maintain.

The defects include:

• Hard-coded constants such as buffer size and loop boundary
• Unused function parameters

For specific defects, see “Good Practice Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: good_practice

Numerical
These defects are errors relating to variables in your code; their values, data types, and usage. The
defects include:

• Mathematical operations
• Conversion overflow
• Operational overflow

For specific defects, see “Numerical Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: numerical

Object Oriented
These defects are related to the object-oriented aspect of C++ programming. The defects highlight
class design issues or issues in the inheritance hierarchy.

The defects include:

• Data member not initialized or incorrectly initialized in constructor
• Incorrect overriding of base class methods
• Breaking of data encapsulation

For specific defects, see “Object Oriented Defects” (Polyspace Bug Finder Access).

9 Configure Bug Finder Checkers

9-42

Command-Line Parameter: object_oriented

Performance
These defects detect issues such as unnecessary data copies and inefficient C++ standard functions
that can lead to performance bottlenecks in C++ code.

The defects include:

• const parameters or return values forcing copy instead of move operations
• Inefficient functions for newline insertion and string length computation

For specific defects, see “Performance Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: performance

Programming
These defects are errors relating to programming syntax. These defects include:

• Assignment versus equality operators
• Mismatches between variable qualifiers or declarations
• Badly formatted strings

For specific defects, see “Programming Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: programming

Resource Management
These defects are related to file handling. The defects include:

• Unclosed file stream
• Operations on a file stream after it is closed

For specific defects, see “Resource Management Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: resource_management

Static Memory
These defects are errors relating to memory usage when the memory is statically allocated. The
defects include:

• Accessing arrays outside their bounds
• Null pointers
• Casting of pointers

For specific defects, see “Static Memory Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: static_memory

 Bug Finder Defect Groups

9-43

Security
These defects highlight places in your code which are vulnerable to hacking or other security attacks.
Many of these defects do not cause runtime errors, but instead point out risky areas in your code. The
defects include:

• Managing sensitive data
• Using dangerous or obsolete functions
• Generating random numbers
• Externally controlled paths and commands

For more details about specific defects, see “Security Defects” (Polyspace Bug Finder Access).

Command-Line Parameter: security

Tainted data
These defects highlight elements in your code which are from unsecured sources. Attackers can use
input data or paths to attack your program and cause failures. These defects highlight elements in
your code that are vulnerable. Defects include:

• Use of tainted variables or pointers
• Externally controlled paths

For more details about specific defects, see “Tainted Data Defects” (Polyspace Bug Finder Access).
You can modify the behavior of the tainted data defects by using the optional command -consider-
analysis-perimeter-as-trust-boundary. See -consider-analysis-perimeter-as-
trust-boundary.

Command-Line Parameter: tainted_data

See Also
Find defects (-checkers)

9 Configure Bug Finder Checkers

9-44

Sources of Tainting in a Polyspace Analysis
Generally, any code element that can be modified from outside of the code is considered tainted data.
An attacker might pass values to tainted variables to cause program failure, inject malicious code, or
leak resources. The results of operations that use tainted data are also considered tainted.. For
instance, if you calculate a path to a file by using tainted variable, the file also becomes tainted. To
mitigate risks associated with tainted data, validate the content of the data before you use it.

Enhance the security of your code by using the Polyspace tainted data defect checkers to identify
sources of tainted data and then validating data from those sources.

Sources of Tainted Data
Polyspace considers data from these sources as tainted data:

• Volatile objects: Objects declared by using the keyword volatile can be modified by the
hardware during program execution. Using volatile objects without checking their content might
lead to segmentation errors, memory leak or security threat. Polyspace flags operations that use
volatile objects without validating them.

• Functions that obtains a user input: Library functions such as getenv, gets, read, scanf, or
fopen return user inputs such as an environment variable, a string, a data stream, formatted data
or a file. The main() might also take input arguments directly from the user. User dependent
inputs are unpredictable. Before using these input, validate them by checking their format, length,
or content.

• Functions that interacts with hardware: Library functions such as RegQueryValueEx interacts
with hardware like registers and peripherals. These functions return hardware dependent data
that might be unpredictable. Before using data obtained from hardware, validate them by
checking their format, length, or content.

• Functions that returns the current time: Library functions such as ctime returns the current time
of the system as a formatted string. The format of the string depends on the environment. Before
using such strings, validate them by checking their format.

• Functions that return a random number: Before using random numbers, validate them by
checking their format and range.

To consider any data that does not originate in the current scope of Polyspace analysis as tainted, use
the command line option -consider-analysis-perimeter-as-trust-boundary. See “Modify
Default Behavior of Bug Finder Checkers” on page 9-4

Impact of Tainted Data Defects
An attacker might exploit tainted data defects by deliberately feeding unexpected input to the
program to expose the stack or execute commands that access or delete sensitive data. Consider this
code which uses input from the user to modify the system.

#include <stdio.h>
#include <stdlib.h>
#define MAX 128
void Echo(char* string, int n) {
 printf("Argument %d is; ",n);
 printf(string); //Tainted operation
}

 Sources of Tainting in a Polyspace Analysis

9-45

void SystemCaller(char* string){
 printf("Calling System...");
 char cmd[MAX] = "/usr/bin/cat ";
 strcat(cmd, string);
 system(cmd);//Tainted operation
}

int main(int argc, char** argv) {
 int i = 0;
 for(i = 0;i<argc;++i){
 Echo(argv[i],i);
 SystemCaller(argv[i]);
 }
 return (0);
}

The input from the user is tainted. Polyspace flags two tainted data defects in this code.

• In the function Echo, the line printf(string) print a user input string without validating the
string. This defect enables an attacker to expose the stack by manipulating the input string. For
instance, if the user input is "%d", function prints the integer in the stack after n is printed.

• In the function SystemCaller, a user input string is used to call an operating system command.
Malicious users can execute commands to access or delete sensitive data, and even crash the
system by exploiting this defect.

To prevent such attacks, validate the tainted data by checking their format, length, or content. For
instance, in this code, the tainted inputs are validated before they are used.

#include <stdio.h>
#include <stdlib.h>
#define MAX 128
extern char** LIST_OF_COMMANDS;
int isAllowd(char*);
void Echo(char* string, int n) {
 printf("Argument %d is; ",n);
 printf("%s",string); //Validated
}
void SystemCaller(char* string){
 printf("Calling System...");
 char cmd[MAX] = "/usr/bin/cat ";
 if(isallowed(string)==1){
 strcat(cmd, string);
 system(cmd);//Validated
 }
}

int main(int argc, char** argv) {
 int i = 0;
 for(i = 0;i<argc|| i<10;++i){
 Echo(argv[i],i);
 SystemCaller(argv[i]);
 }
 return (0);
}

9 Configure Bug Finder Checkers

9-46

By specifying the format as %s in printf, the tainted input string is validated. Now, the program
prints the content of the string and the stack is no longer exposed. In SystemCaller, the program
executes an operating system command only if the input matches an allowed command.

For details about the tainted data defects in Polyspace, see

See Also
-consider-analysis-perimeter-as-trust-boundary | Find defects (-checkers)

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 9-4

 Sources of Tainting in a Polyspace Analysis

9-47

Polyspace Bug Finder Defects Checkers Enabled by Default
When you start a Bug Finder analysis, these checkers are enabled by default:

Defect Command-line Name
Absorption of float operand FLOAT_ABSORPTION
Accessing object with temporary
lifetime

TEMP_OBJECT_ACCESS

Alignment changed after memory
reallocation

ALIGNMENT_CHANGE

Alternating input and output from a
stream without flush or positioning
call

IO_INTERLEAVING

Array access out of bounds OUT_BOUND_ARRAY
Assertion ASSERT
Atomic load and store sequence not
atomic

ATOMIC_VAR_SEQUENCE_NOT_ATOMIC

Atomic variable accessed twice in an
expression

ATOMIC_VAR_ACCESS_TWICE

Base class assignment operator not
called

MISSING_BASE_ASSIGN_OP_CALL

Base class destructor not virtual DTOR_NOT_VIRTUAL
Buffer overflow from incorrect string
format specifier

STR_FORMAT_BUFFER_OVERFLOW

Call through non-prototyped function
pointer

UNPROTOTYPED_FUNC_CALL

Character value absorbed into EOF CHAR_EOF_CONFUSED
Closing a previously closed resource DOUBLE_RESOURCE_CLOSE
Conversion or deletion of incomplete
class pointer

INCOMPLETE_CLASS_PTR

Copy constructor not called in
initialization list

MISSING_COPY_CTOR_CALL

Copy operation modifying source
operand

COPY_MODIFYING_SOURCE

Data race DATA_RACE
Data race on adjacent bit fields DATA_RACE_BIT_FIELDS
Data race through standard library
function call

DATA_RACE_STD_LIB

Dead code DEAD_CODE
Deadlock DEADLOCK
Deallocation of previously deallocated
pointer

DOUBLE_DEALLOCATION

9 Configure Bug Finder Checkers

9-48

Defect Command-line Name
Declaration mismatch DECL_MISMATCH
Destination buffer overflow in string
manipulation

STRLIB_BUFFER_OVERFLOW

Destination buffer underflow in string
manipulation

STRLIB_BUFFER_UNDERFLOW

Double lock DOUBLE_LOCK
Double unlock DOUBLE_UNLOCK
Environment pointer invalidated by
previous operation

INVALID_ENV_POINTER

Errno not reset MISSING_ERRNO_RESET
Exception caught by value EXCP_CAUGHT_BY_VALUE
Exception handler hidden by previous
handler

EXCP_HANDLER_HIDDEN

Float conversion overflow FLOAT_CONV_OVFL
Float division by zero FLOAT_ZERO_DIV
Format string specifiers and arguments
mismatch

STRING_FORMAT

Improper array initialization IMPROPER_ARRAY_INIT
Incompatible types prevent overriding VIRTUAL_FUNC_HIDING
Incorrect data type passed to va_arg VA_ARG_INCORRECT_TYPE
Incorrect pointer scaling BAD_PTR_SCALING
Incorrect type data passed to va_start VA_START_INCORRECT_TYPE
Incorrect use of offsetof in C++ OFFSETOF_MISUSE
Incorrect use of va_start VA_START_MISUSE
Incorrect value forwarding INCORRECT_VALUE_FORWARDING
Inline constraint not respected INLINE_CONSTRAINT_NOT_RESPECTED
Integer conversion overflow INT_CONV_OVFL
Integer division by zero INT_ZERO_DIV
Invalid assumptions about memory
organization

INVALID_MEMORY_ASSUMPTION

Invalid deletion of pointer BAD_DELETE
Invalid free of pointer BAD_FREE
Invalid use of = (assignment) operator BAD_EQUAL_USE
Invalid use of == (equality) operator BAD_EQUAL_EQUAL_USE
Invalid use of standard library
floating point routine

FLOAT_STD_LIB

Invalid use of standard library
integer routine

INT_STD_LIB

 Polyspace Bug Finder Defects Checkers Enabled by Default

9-49

Defect Command-line Name
Invalid use of standard library memory
routine

MEM_STD_LIB

Invalid use of standard library
routine

OTHER_STD_LIB

Invalid use of standard library string
routine

STR_STD_LIB

Invalid va_list argument INVALID_VA_LIST_ARG
Lambda used as typeid operand LAMBDA_TYPE_MISUSE
Memory comparison of padding data MEMCMP_PADDING_DATA
Memory comparison of strings MEMCMP_STRINGS
Missing lock BAD_UNLOCK
Missing null in string array MISSING_NULL_CHAR
Missing return statement MISSING_RETURN
Missing unlock BAD_LOCK
Misuse of a FILE object FILE_OBJECT_MISUSE
Misuse of errno ERRNO_MISUSE
Misuse of errno in a signal handler SIG_HANDLER_ERRNO_MISUSE
Misuse of sign-extended character
value

CHARACTER_MISUSE

Misuse of structure with flexible
array member

FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE

Move operation on const object MOVE_CONST_OBJECT
Noexcept function exits with exception NOEXCEPT_FUNCTION_THROWS
Non-initialized pointer NON_INIT_PTR
Non-initialized variable NON_INIT_VAR
Null pointer NULL_PTR
Object slicing OBJECT_SLICING
Opening previously opened resource DOUBLE_RESOURCE_OPEN
Operator new not overloaded for
possibly overaligned class

MISSING_OVERLOAD_NEW_FOR_ALIGNED_OBJ

Partial override of overloaded virtual
functions

PARTIAL_OVERRIDE

Partially accessed array PARTIALLY_ACCESSED_ARRAY
Pointer access out of bounds OUT_BOUND_PTR
Pointer or reference to stack variable
leaving scope

LOCAL_ADDR_ESCAPE

Possible misuse of sizeof SIZEOF_MISUSE

9 Configure Bug Finder Checkers

9-50

Defect Command-line Name
Possibly unintended evaluation of
expression because of operator
precedence rules

OPERATOR_PRECEDENCE

Predefined macro used as an object MACRO_USED_AS_OBJECT
Preprocessor directive in macro
argument

PRE_DIRECTIVE_MACRO_ARG

Resource leak RESOURCE_LEAK
Return from computational exception
signal handler

SIG_HANDLER_COMP_EXCP_RETURN

Self assignment not tested in operator MISSING_SELF_ASSIGN_TEST
Shared data access within signal
handler

SIG_HANDLER_SHARED_OBJECT

Side effect of expression ignored SIDE_EFFECT_IGNORED
Sign change integer conversion
overflow

SIGN_CHANGE

Signal call from within signal handler SIG_HANDLER_CALLING_SIGNAL
Standard function call with incorrect
arguments

STD_FUNC_ARG_MISMATCH

Stream argument with possibly
unintended side effects

STREAM_WITH_SIDE_EFFECT

Subtraction or comparison between
pointers to different arrays

PTR_TO_DIFF_ARRAY

Throw argument raises unexpected
exception

THROW_ARGUMENT_EXPRESSION_THROWS

Too many va_arg calls for current
argument list

TOO_MANY_VA_ARG_CALLS

Typedef mismatch TYPEDEF_MISMATCH
Universal character name from token
concatenation

PRE_UCNAME_JOIN_TOKENS

Unnamed namespace in header file UNNAMED_NAMESPACE_IN_HEADER
Unreachable code UNREACHABLE
Unreliable cast of function pointer FUNC_CAST
Unreliable cast of pointer PTR_CAST
Unsigned integer conversion overflow UINT_CONV_OVFL
Use of automatic variable as putenv-
family function argument

PUTENV_AUTO_VAR

Use of previously closed resource CLOSED_RESOURCE_USE
Use of previously freed pointer FREED_PTR
Useless if USELESS_IF

 Polyspace Bug Finder Defects Checkers Enabled by Default

9-51

Defect Command-line Name
Variable length array with nonpositive
size

NON_POSITIVE_VLA_SIZE

Variable shadowing VAR_SHADOWING
Write without a further read USELESS_WRITE
Writing to const qualified object CONSTANT_OBJECT_WRITE
Writing to read-only resource READ_ONLY_RESOURCE_WRITE
Wrong type used in sizeof PTR_SIZEOF_MISMATCH

To enable other checkers and coding rule, configure checkers selections. See “Prepare Checkers
Configuration for Polyspace Bug Finder Analysis” on page 9-21.

9 Configure Bug Finder Checkers

9-52

Bug Finder Results Found in Fast Analysis Mode
In fast analysis mode, Bug Finder checks for a subset of defects and coding rules only. The tables
below list the results that can be found in a fast analysis. See also Use fast analysis mode for
Bug Finder (-fast-analysis).

These defects and coding standard violations are either found earlier in the analysis or leverage
archived information from a previous analysis. The analysis results are comparatively easier to review
and fix because most results can be understood by focusing on two or three lines of code (the line
with the defect and one or two previous lines).

Because of the simplified nature of the analysis, you might see fewer defects in the fast analysis mode
compared to a regular Bug Finder analysis.

Polyspace Bug Finder Defects
Static Memory

Name Description
Buffer overflow from incorrect string format specifier
(str_format_buffer_overflow)

String format specifier causes buffer argument of
standard library functions to overflow

Unreliable cast of function pointer
(func_cast)

Function pointer cast to another function pointer with
different argument or return type

Unreliable cast of pointer
(ptr_cast)

Pointer implicitly cast to different data type

 Bug Finder Results Found in Fast Analysis Mode

9-53

Programming

Name Description
Copy of overlapping memory
(overlapping_copy)

Source and destination arguments of a copy function
have overlapping memory

Exception caught by value
(excp_caught_by_value)

catch statement accepts an object by value

Exception handler hidden by previous handler
(excp_handler_hidden)

catch statement is not reached because of an earlier
catch statement for the same exception

Format string specifiers and arguments mismatch
(string_format)

String specifiers do not match corresponding
arguments

Improper array initialization
(improper_array_init)

Incorrect array initialization when using initializers

Invalid use of == (equality) operator
(bad_equal_equal_use)

Equality operation in assignment statement

Invalid use of = (assignment) operator
(bad_equal_use)

Assignment in conditional statement

Invalid use of floating point operation
(bad_float_op)

Imprecise comparison of floating point variables

Missing null in string array
(missing_null_char)

String does not terminate with null character

Overlapping assignment
(overlapping_assign)

Memory overlap between left and right sides of an
assignment

Possibly unintended evaluation of expression because
of operator precedence rules
(operator_precedence)

Operator precedence rules cause unexpected
evaluation order in arithmetic expression

Unsafe conversion between pointer and integer
(bad_int_ptr_cast)

Misaligned or invalid results from conversions
between pointer and integer types

Wrong type used in sizeof
(ptr_sizeof_mismatch)

sizeof argument does not match pointed type

Data Flow

Name Description
Code deactivated by constant false condition
(deactivated_code)

Code segment deactivated by #if 0 directive or
if(0) condition

Missing return statement
(missing_return)

Function does not return value though return type is
not void

Static uncalled function
(uncalled_func)

Function with static scope not called in file

Variable shadowing
(var_shadowing)

Variable hides another variable of same name with
nested scope

9 Configure Bug Finder Checkers

9-54

Object Oriented

Name Description
*this not returned in copy assignment operator
(return_not_ref_to_this)

operator= method does not return a pointer to the
current object

Base class assignment operator not called
(missing_base_assign_op_call)

Copy assignment operator does not call copy
assignment operators of base subobjects

Base class destructor not virtual
(dtor_not_virtual)

Class cannot behave polymorphically for deletion of
derived class objects

Copy constructor not called in initialization list
(missing_copy_ctor_call)

Copy constructor does not call copy constructors of
some members or base classes

Incompatible types prevent overriding
(virtual_func_hiding)

Derived class method hides a virtual base class method
instead of overriding it

Member not initialized in constructor
(non_init_member)

Constructor does not initialize some members of a
class

Missing explicit keyword
(missing_explicit_keyword)

Constructor missing the explicit specifier

Missing virtual inheritance
(missing_virtual_inheritance)

A base class is inherited virtually and nonvirtually in
the same hierarchy

Object slicing
(object_slicing)

Derived class object passed by value to function with
base class parameter

Partial override of overloaded virtual functions
(partial_override)

Class overrides fraction of inherited virtual functions
with a given name

Return of non const handle to encapsulated data
member
(breaking_data_encapsulation)

Method returns pointer or reference to internal
member of object

Self assignment not tested in operator
(missing_self_assign_test)

Copy assignment operator does not test for self-
assignment

Security

Name Description
Function pointer assigned with absolute address
(func_ptr_absolute_addr)

Constant expression is used as function address is
vulnerable to code injection

 Bug Finder Results Found in Fast Analysis Mode

9-55

Good Practice

Name Description
Bitwise and arithmetic operation on the same data
(bitwise_arith_mix)

Statement with mixed bitwise and arithmetic
operations

Delete of void pointer
(delete_of_void_ptr)

delete operates on a void* pointer pointing to an
object

Hard-coded buffer size
(hard_coded_buffer_size)

Size of memory buffer is a numerical value instead of
symbolic constant

Hard-coded loop boundary
(hard_coded_loop_boundary)

Loop boundary is a numerical value instead of
symbolic constant

Large pass-by-value argument
(pass_by_value)

Large argument passed by value between functions

Line with more than one statement
(more_than_one_statement)

Multiple statements on a line

Missing break of switch case
(missing_switch_break)

No comments at the end of switch case without a
break statement

Missing reset of a freed pointer
(missing_freed_ptr_reset)

Pointer free not followed by a reset statement to clear
leftover data

Unused parameter
(unused_parameter)

Function prototype has parameters not read or written
in function body

MISRA C:2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis.

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be used.
4.2 Trigraphs shall not be used.

9 Configure Bug Finder Checkers

9-56

Identifiers

Rule Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an outer scope, and

therefore hide that identifier.

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character values.
6.2 Signed and unsigned char type shall be used only for the storage and use of numeric values.
6.3 typedefs that indicate size and signedness should be used in place of the basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be used.

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible at both the function

definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be explicitly stated.
8.3 For each function parameter the type given in the declaration and definition shall be identical, and

the return types shall also be identical.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a single function.
8.8 An external object or function shall be declared in one file and only one file.
8.9 An identifier with external linkage shall have exactly one external definition.
8.11 The static storage class specifier shall be used in definitions and declarations of objects and

functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated explicitly or defined

implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero initialization of arrays and

structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize members other than

the first, unless all items are explicitly initialized.

 Bug Finder Results Found in Fast Analysis Mode

9-57

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a different

underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a different type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type that is narrower and
of the same signedness as the underlying type of the expression.

10.4 The value of a complex expression of float type may only be cast to narrower floating type.
10.5 If the bitwise operator ~ and << are applied to an operand of underlying type unsigned char or

unsigned short, the result shall be immediately cast to the underlying type of the operand
10.6 The "U" suffix shall be applied to all constants of unsigned types.

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any type other than an

integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type other than an

integral type, another pointer to a object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a different pointer to object

type.
11.5 A cast shall not be performed that removes any const or volatile qualification from the type

addressed by a pointer

9 Configure Bug Finder Checkers

9-58

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in expressions.
12.3 The sizeof operator should not be used on expressions that contain side effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean. Expression that are

effectively Boolean should not be used as operands to operators other than (&&, || or !).
12.7 Bitwise operators shall not be applied to operands whose underlying type is signed.
12.9 The unary minus operator shall not be applied to an expression whose underlying type is unsigned.
12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with other operators in an

expression

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean values.
13.2 Tests of a value against zero should be made explicit, unless the operand is effectively Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of floating type.
13.5 The three expressions of a for statement shall be concerned only with loop control.
13.6 Numeric variables being used within a for loop for iteration counting should not be modified in

the body of the loop.

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used for loop termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for statement shall be a

compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The else keyword shall

be followed by either a compound statement, or another if statement.
14.10 All if else if constructs should contain a final else clause.

 Bug Finder Results Found in Fast Analysis Mode

9-59

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound statement is the

body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype declaration.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit return statement

with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a parenthesized

parameter list, which may be empty.

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

9 Configure Bug Finder Checkers

9-60

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors directives or

comments.
19.2 Nonstandard characters should not occur in header file names in #include directives.
19.3 The #include directive shall be followed by either a <filename> or "filename" sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized expression, a type

qualifier, a storage class specifier, or a do-while-zero construct.
19.5 Macros shall not be #define-d and #undef-d within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like preprocessing directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be enclosed in

parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use, except in #ifdef and

#ifndef preprocessor directives and the defined() operator.
19.12 There shall be at most one occurrence of the # or ## preprocessor operators in a single macro

definition.
19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file being included twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded by the

preprocessor.
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or

#ifdef directive to which they are related.

 Bug Finder Results Found in Fast Analysis Mode

9-61

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be defined, redefined

or undefined.
20.2 The names of standard library macros, objects and functions shall not be reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall not be used.
20.11 The library functions abort, exit, getenv and system from library <stdlib.h> shall not be

used.
20.12 The time handling functions of library <time.h> shall not be used.

MISRA C:2012 Rules
Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and constraints, and shall not

exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

9 Configure Bug Finder Checkers

9-62

Identifiers

Rule Description
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in an outer scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented in an unsigned

type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is "pointer to const-

qualified char".

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.4 A compatible declaration shall be visible when an object or function with external linkage is

defined.
8.5 An external object or function shall be declared once in one and only one file.
8.6 An identifier with external linkage shall have exactly one external definition.
8.8 The static storage class specifier shall be used in all declarations of objects and functions that

have internal linkage.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration constant shall be

unique.
8.14 The restrict type qualifier shall not be used.

 Bug Finder Results Found in Fast Analysis Mode

9-63

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of the array shall be

specified explicitly.

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in addition and

subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower essential type or of a

different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are performed shall have

the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential type.
10.6 The value of a composite expression shall not be assigned to an object with wider essential type.
10.7 If a composite expression is used as one operand of an operator in which the usual arithmetic

conversions are performed then the other operand shall not have wider essential type.
10.8 The value of a composite expression shall not be cast to a different essential type category or a

wider essential type.

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type and any other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to a different object

type.
11.4 A conversion should not be performed between a pointer to object and an integer type.
11.5 A conversion should not be performed from pointer to void into pointer to object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer arithmetic type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed to by a pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer constant.

9 Configure Bug Finder Checkers

9-64

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator should have no other

potential side effects other than that caused by the increment or decrement operator.
13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which has potential side

effects.

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression of an iteration-

statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block, or in any block

enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate any iteration

statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a compound statement.
15.7 All if … else if constructs shall be terminated with an else statement.

 Bug Finder Results Found in Fast Analysis Mode

9-65

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound statement is the

body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a switch statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit return statement

with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword between the [].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

9 Configure Bug Finder Checkers

9-66

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur in a header file

name.
20.3 The #include directive shall be followed by either a <filename> or \"filename\" sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro argument.
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed in parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing directives shall be

#define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately be followed by a ##

operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself subject to further

macro replacement, shall only be used as an operand to these operators.
20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,

#ifdef or #ifndef directive to which they are related.

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved macro name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall not be used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

 Bug Finder Results Found in Fast Analysis Mode

9-67

MISRA C++ 2008 Rules
Language Independent Issues

Rule Description
0-1-7 The value returned by a function having a non-void return type that is not an overloaded operator

shall always be used.
0-1-11 There shall be no unused parameters (named or unnamed) in non- virtual functions.
0-1-12 There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual

function and all the functions that override it.
0-2-1 An object shall not be assigned to an overlapping object.

General

Rule Description
1-0-1 All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating Technical

Corrigendum 1".

Lexical Conventions

Rule Description
2-3-1 Trigraphs shall not be used.
2-5-1 Digraphs should not be used.
2-7-1 The character sequence /* shall not be used within a C-style comment.
2-10-1 Different identifiers shall be typographically unambiguous.
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer scope.
2-10-3 A typedef name (including qualification, if any) shall be a unique identifier.
2-10-4 A class, union or enum name (including qualification, if any) shall be a unique identifier.
2-10-6 If an identifier refers to a type, it shall not also refer to an object or a function in the same scope.
2-13-1 Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.
2-13-2 Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used.
2-13-3 A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.
2-13-4 Literal suffixes shall be upper case.
2-13-5 Narrow and wide string literals shall not be concatenated.

9 Configure Bug Finder Checkers

9-68

Basic Concepts

Rule Description
3-1-1 It shall be possible to include any header file in multiple translation units without violating the One

Definition Rule.
3-1-2 Functions shall not be declared at block scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly by

initialization.
3-3-1 Objects or functions with external linkage shall be declared in a header file.
3-3-2 If a function has internal linkage then all re-declarations shall include the static storage class

specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that minimizes its

visibility.
3-9-1 The types used for an object, a function return type, or a function parameter shall be token-for-

token identical in all declarations and re-declarations.
3-9-2 Typedefs that indicate size and signedness should be used in place of the basic numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.

Standard Conversions

Rule Description
4-5-1 Expressions with type bool shall not be used as operands to built-in operators other than the

assignment operator =, the logical operators &&, ||, !, the equality operators == and !=, the unary
& operator, and the conditional operator.

4-5-2 Expressions with type enum shall not be used as operands to built- in operators other than the
subscript operator [], the assignment operator =, the equality operators == and !=, the unary &
operator, and the relational operators <, <=, >, >=.

4-5-3 Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator =, the equality operators == and !=, and the unary &
operator.

 Bug Finder Results Found in Fast Analysis Mode

9-69

Expressions

Rule Description
5-0-1 The value of an expression shall be the same under any order of evaluation that the standard

permits.
5-0-2 Limited dependence should be placed on C++ operator precedence rules in expressions.
5-0-3 A cvalue expression shall not be implicitly converted to a different underlying type.
5-0-4 An implicit integral conversion shall not change the signedness of the underlying type.
5-0-5 There shall be no implicit floating-integral conversions.
5-0-6 An implicit integral or floating-point conversion shall not reduce the size of the underlying type.
5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of the underlying type of

a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the underlying type of a cvalue

expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an underlying type of unsigned

char or unsigned short, the result shall be immediately cast to the underlying type of the operand.
5-0-11 The plain char type shall only be used for the storage and use of character values.
5-0-12 signed char and unsigned char type shall only be used for the storage and use of numeric values.
5-0-13 The condition of an if-statement and the condition of an iteration-statement shall have type bool.
5-0-14 The first operand of a conditional-operator shall have type bool.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to the same

array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-0-20 Non-constant operands to a binary bitwise operator shall have the same underlying type.
5-0-21 Bitwise operators shall only be applied to operands of unsigned underlying type.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of

dynamic_cast.
5-2-3 Casts from a base class to a derived class should not be performed on polymorphic types.
5-2-4 C-style casts (other than void casts) and functional notation casts (other than explicit constructor

calls) shall not be used.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a pointer or reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type, including a pointer to

function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer type, either directly or

indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object with pointer

type.
5-2-9 A cast should not convert a pointer type to an integral type.

9 Configure Bug Finder Checkers

9-70

Rule Description
5-2-10 The increment (++) and decrement (--) operators should not be mixed with other operators in

an expression.
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.
5-2-12 An identifier with array type passed as a function argument shall not decay to a pointer.
5-3-1 Each operand of the ! operator, the logical && or the logical || operators shall have type bool.
5-3-2 The unary minus operator shall not be applied to an expression whose underlying type is unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-3-4 Evaluation of the operand to the sizeof operator shall not contain side effects.
5-8-1 The right hand operand of a shift operator shall lie between zero and one less than the width in

bits of the underlying type of the left hand operand.
5-14-1 The right hand operand of a logical && or || operator shall not contain side effects.
5-18-1 The comma operator shall not be used.
5-19-1 Evaluation of constant unsigned integer expressions should not lead to wrap-around.

 Bug Finder Results Found in Fast Analysis Mode

9-71

Statements

Rule Description
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or inequality.
6-2-3 Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a

comment, provided that the first character following the null statement is a white - space
character.

6-3-1 The statement forming the body of a switch, while, do ... while or for statement shall be a
compound statement.

6-4-1 An if (condition) construct shall be followed by a compound statement. The else keyword shall be
followed by either a compound statement, or another if statement.

6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-3 A switch statement shall be a well-formed switch statement.
6-4-4 A switch-label shall only be used when the most closely-enclosing compound statement is the body

of a switch statement.
6-4-5 An unconditional throw or break statement shall terminate every non - empty switch-clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-4-7 The condition of a switch statement shall not have bool type.
6-4-8 Every switch statement shall have at least one case-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall only be

used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains constant for

the duration of the loop.
6-5-5 A loop-control-variable other than the loop-counter shall not be modified within condition or

expression.
6-5-6 A loop-control-variable other than the loop-counter which is modified in statement shall have type

bool.
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a block

enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-3 The continue statement shall only be used within a well-formed for loop.
6-6-4 For any iteration statement there shall be no more than one break or goto statement used for loop

termination.
6-6-5 A function shall have a single point of exit at the end of the function.

9 Configure Bug Finder Checkers

9-72

Declarations

Rule Description
7-3-1 The global namespace shall only contain main, namespace declarations and extern "C"

declarations.
7-3-2 The identifier main shall not be used for a function other than the global function main.
7-3-3 There shall be no unnamed namespaces in header files.
7-3-4 using-directives shall not be used.
7-3-5 Multiple declarations for an identifier in the same namespace shall not straddle a using-

declaration for that identifier.
7-3-6 using-directives and using-declarations (excluding class scope or function scope using-

declarations) shall not be used in header files.
7-4-2 Assembler instructions shall only be introduced using the asm declaration.
7-4-3 Assembly language shall be encapsulated and isolated.

Declarators

Rule Description
8-0-1 An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or

member-declarator respectively.
8-3-1 Parameters in an overriding virtual function shall either use the same default arguments as the

function they override, or else shall not specify any default arguments.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-2 The identifiers used for the parameters in a re-declaration of a function shall be identical to those

in the declaration.
8-4-3 All exit paths from a function with non- void return type shall have an explicit return statement

with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero initialization of arrays

and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize members other than

the first, unless all items are explicitly initialized.

Classes

Rule Description
9-3-1 const member functions shall not return non-const pointers or references to class-data.
9-3-2 Member functions shall not return non-const handles to class-data.
9-5-1 Unions shall not be used.
9-6-2 Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.
9-6-3 Bit-fields shall not have enum type.
9-6-4 Named bit-fields with signed integer type shall have a length of more than one bit.

 Bug Finder Results Found in Fast Analysis Mode

9-73

Derived Classes

Rule Description
10-1-1 Classes should not be derived from virtual bases.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and non-virtual in the same hierarchy.
10-2-1 All accessible entity names within a multiple inheritance hierarchy should be unique.
10-3-1 There shall be no more than one definition of each virtual function on each path through the

inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure

virtual.

Member Access Control

Rule Description
11-0-1 Member data in non- POD class types shall be private.

Special Member Functions

Rule Description
12-1-1 An object's dynamic type shall not be used from the body of its constructor or destructor.
12-1-2 All constructors of a class should explicitly call a constructor for all of its immediate base classes

and all virtual base classes.
12-1-3 All constructors that are callable with a single argument of fundamental type shall be declared

explicit.
12-8-1 A copy constructor shall only initialize its base classes and the non- static members of the class of

which it is a member.
12-8-2 The copy assignment operator shall be declared protected or private in an abstract class.

9 Configure Bug Finder Checkers

9-74

Templates

Rule Description
14-5-2 A copy constructor shall be declared when there is a template constructor with a single parameter

that is a generic parameter.
14-5-3 A copy assignment operator shall be declared when there is a template assignment operator with a

parameter that is a generic parameter.
14-6-1 In a class template with a dependent base, any name that may be found in that dependent base

shall be referred to using a qualified-id or this->.
14-6-2 The function chosen by overload resolution shall resolve to a function declared previously in the

translation unit.
14-7-3 All partial and explicit specializations for a template shall be declared in the same file as the

declaration of their primary template.
14-8-1 Overloaded function templates shall not be explicitly specialized.
14-8-2 The viable function set for a function call should either contain no function specializations, or only

contain function specializations.

Exception Handling

Rule Description
15-0-2 An exception object should not have pointer type.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch statement.
15-1-2 NULL shall not be thrown explicitly.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch handler.
15-3-2 There should be at least one exception handler to catch all otherwise unhandled exceptions
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor shall not

reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-block for a

derived class and some or all of its bases, the handlers shall be ordered most-derived to base class.
15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-block, any

ellipsis (catch-all) handler shall occur last.
15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall only be

capable of throwing exceptions of the indicated type(s).

 Bug Finder Results Found in Fast Analysis Mode

9-75

Preprocessing Directives

Rule Description
16-0-1 #include directives in a file shall only be preceded by other preprocessor directives or comments.
16-0-2 Macros shall only be #define 'd or #undef 'd in the global namespace.
16-0-3 #undef shall not be used.
16-0-4 Function-like macros shall not be defined.
16-0-5 Arguments to a function-like macro shall not contain tokens that look like preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall be enclosed in

parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor directives, except as

operands to the defined operator.
16-0-8 If the # token appears as the first token on a line, then it shall be immediately followed by a

preprocessing token.
16-1-1 The defined preprocessor operator shall only be used in one of the two standard forms.
16-1-2 All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef

directive to which they are related.
16-2-1 The pre-processor shall only be used for file inclusion and include guards.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage class specifiers.
16-2-3 Include guards shall be provided.
16-2-4 The ', ", /* or // characters shall not occur in a header file name.
16-2-5 The \ character should not occur in a header file name.
16-2-6 The #include directive shall be followed by either a <filename> or "filename" sequence.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single macro definition.
16-3-2 The # and ## operators should not be used.
16-6-1 All uses of the #pragma directive shall be documented.
17-0-1 Reserved identifiers, macros and functions in the standard library shall not be defined, redefined

or undefined.
17-0-2 The names of standard library macros and objects shall not be reused.
17-0-5 The setjmp macro and the longjmp function shall not be used.

9 Configure Bug Finder Checkers

9-76

Language Support Library

Rule Description
18-0-1 The C library shall not be used.
18-0-2 The library functions atof, atoi and atol from library <cstdlib> shall not be used.
18-0-3 The library functions abort, exit, getenv and system from library <cstdlib> shall not be used.
18-0-4 The time handling functions of library <ctime> shall not be used.
18-0-5 The unbounded functions of library <cstring> shall not be used.
18-2-1 The macro offsetof shall not be used.
18-4-1 Dynamic heap memory allocation shall not be used.
18-7-1 The signal handling facilities of <csignal> shall not be used.

Diagnostic Library

Rule Description
19-3-1 The error indicator errno shall not be used.

Input/Output Library

Rule Description
27-0-1 The stream input/output library <cstdio> shall not be used.

 Bug Finder Results Found in Fast Analysis Mode

9-77

CWE Coding Standard and Polyspace Results
Common Weakness Enumeration (CWE) is a dictionary of common software weakness types that can
occur in software architecture, design, code, or implementation. These weaknesses can lead to
security vulnerabilities.

CWE and Polyspace Bug Finder
The CWE dictionary assigns a unique identifier to each software weakness type. These identifiers
serve as a common language for describing software security weaknesses and a standard for software
security tools targeting these weaknesses. For more information, see Common Weakness
Enumeration.

Polyspace Bug Finder results can be mapped to CWE identifiers. Using Bug Finder, you can check
and document if your software has weaknesses listed in the CWE dictionary. Bug Finder supports the
following aspects of the CWE Compatibility and Effectiveness Program:

• CWE Searchable: For each supported CWE identifier, you can see all instances in your code that
have weaknesses corresponding to the identifier.

• CWE Output: For each Polyspace Bug Finder defect:

• You can view the associated CWE identifier.
• You can report the associated CWE identifier.

Bug Finder results are mapped to CWE identifiers (IDs). Using the Bug Finder results, you can
evaluate your code against the CWE standard. For instance, CWE ID 119 (Improper restriction of
operations within the bounds of a memory buffer) maps to the Bug Finder defects, Array access out
of bounds and Pointer access out of bounds.

For more information on the CWE Compatibility and Effectiveness Program, see CWE Compatibility.

Find CWE IDs from Polyspace Results
Use the following workflow if you want to focus your Bug Finder analysis on the CWE standard.

• Analysis: Check your code only for those Bug Finder defects that correspond to the standard. Use
the option Find defects (-checkers) with value CWE.

• Results: If you enable only the defect checkers corresponding to the CWE standard, you see only
the defects that correspond to the standard. Fix or justify each defect.

Along with defects, you can see the CWE IDs mapped to each defect in the CWE ID column on the
Results List pane. If the column is not enabled by default, right-click any column header and
select CWE ID.

• Report: When you generate a report, choose the SecurityCWE template tailored for the CWE
standard. The report shows the CWE ID-s corresponding to each result.

Mapping Between CWE Identifiers and Polyspace Results
The following table lists the CWE IDs (version 3.3) addressed by Polyspace Bug Finder with its
corresponding defect checkers. Using Polyspace Bug Finder defect checkers, you can check for 133
CWE IDs.

9 Configure Bug Finder Checkers

9-78

https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/compatible/

There are three types of CWE identifiers: Class, Base and Variant. Identifiers of type Class define
security weaknesses at an abstract level independent of a specific language or technology, while
identifiers of type Base and Variant are more concrete. On the other hand, Polyspace Bug Finder
results are designed to be specific so that users can have a precise diagnosis of the defect in their
code and understand the defect quickly. Therefore:

• The Bug Finder results are mapped to the specific identifiers of type Base and Variant rather than
the generic identifiers of type Class.

Only when a result covers more ground than a specific CWE identifier is the result mapped to its
more general parent type. For instance, the defect checker Array access out of bounds covers
many kinds of buffer overflows, while CWE-788 refers only to “Access of Memory Location After
End of Buffer”. Therefore, the defect checker is mapped to its parent, CWE-119, which refers to
“Improper Restriction of Operations within the Bounds of a Memory Buffer”. However, to keep the
mapping precise, an attempt is made to map to specific CWE identifiers.

• Often, more than one Bug Finder result is mapped to a certain CWE identifier.

For instance, CWE-908 refers to “Use of Uninitialized Resource”. To highlights specific kinds of
uninitialized resources, Bug Finder has three different checkers: Member not initialized in
constructor, Non-initialized pointer, and Non-initialized variable.

For mapping to the subsets CWE-658 and CWE-659, see “Mapping Between CWE-658 or 659 and
Polyspace Results” on page 9-103.

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
15 External control of

system or configuration
setting

Host change using externally controlled
elements

Use of externally controlled environment
variable

20 Improper input
validation

Unsafe conversion from string to numerical
value

22 Improper Limitation of
a Pathname to a
Restricted Directory
('Path Traversal')

Vulnerable path manipulation

23 Relative path traversal Vulnerable path manipulation
36 Absolute path traversal Vulnerable path manipulation
67 Improper Handling of

Windows Device Names
Inappropriate I/O operation on device files

77 Improper neutralization
of special elements used
in a command

Execution of externally controlled command

Unsafe call to a system function
78 Improper neutralization

of special elements used
in an OS command

Execution of externally controlled command

Unsafe call to a system function
88 Argument injection or

modification
Execution of externally controlled command

Unsafe call to a system function

 CWE Coding Standard and Polyspace Results

9-79

https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/908.html
https://cwe.mitre.org/data/definitions/15.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/36.html
https://cwe.mitre.org/data/definitions/67.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/88.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
114 Process control Command executed from externally controlled

path

Execution of a binary from a relative path
can be controlled by an external actor

Execution of externally controlled command

Library loaded from externally controlled
path

Load of library from a relative path can be
controlled by an external actor

119 Improper restriction of
operations within the
bounds of a memory
buffer

Array access out of bounds

Pointer access out of bounds

120 Buffer copy without
checking size of input
('Classic buffer
overflow')

Invalid use of standard library memory
routine

Invalid use of standard library string
routine

Tainted NULL or non-null-terminated string
121 Stack-based buffer

overflow
Array access with tainted index

Destination buffer overflow in string
manipulation

122 Heap-based buffer
overflow

Pointer dereference with tainted offset

124 Buffer underwrite
('Buffer underflow')

Array access with tainted index

Buffer overflow from incorrect string format
specifier

Destination buffer underflow in string
manipulation

Pointer dereference with tainted offset
125 Out-of-bounds read Array access with tainted index

Buffer overflow from incorrect string format
specifier

Destination buffer overflow in string
manipulation

126 Buffer over-read Buffer overflow from incorrect string format
specifier

9 Configure Bug Finder Checkers

9-80

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
127 Buffer under-read Buffer overflow from incorrect string format

specifier
128 Wrap-around error Integer constant overflow

Integer conversion overflow

Integer overflow

Memory allocation with tainted size

Tainted sign change conversion

Tainted size of variable length array

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow
129 Improper validation of

array index
Array access with tainted index

Pointer dereference with tainted offset
130 Improper handling of

length parameter
inconsistency

Mismatch between data length and size

131 Incorrect calculation of
buffer size

Array access out of bounds

Memory allocation with tainted size

Pointer access out of bounds

Tainted sign change conversion

Tainted size of variable length array

Unsigned integer conversion overflow

Unsigned integer overflow
134 Uncontrolled format

string
Tainted string format

135 Incorrect Calculation of
Multi-Byte String
Length

Destination buffer overflow in string
manipulation

Misuse of narrow or wide character string

Unreliable cast of pointer

 CWE Coding Standard and Polyspace Results

9-81

https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/135.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
170 Improper null

termination
Missing null in string array

Misuse of readlink()

Tainted NULL or non-null-terminated string
188 Reliance on data/

memory layout
Invalid assumptions about memory organization

Memory comparison of padding data

Memory comparison of strings

Missing byte reordering when transferring
data

Pointer access out of bounds
189 Numeric Errors Absorption of float operand

Float conversion overflow

Float division by zero

Float overflow

Integer constant overflow

Integer conversion overflow

Integer division by zero

Integer overflow

Precision loss in integer to float conversion

Shift of a negative value

Shift operation overflow

Tainted division operand

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow

9 Configure Bug Finder Checkers

9-82

https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/189.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
190 Integer overflow or

wraparound
Integer conversion overflow

Integer constant overflow

Integer overflow

Integer precision exceeded

Possible invalid operation on boolean operand

Shift operation overflow

Tainted division operand

Unsigned integer conversion overflow

Unsigned integer overflow

Unsigned integer constant overflow
191 Integer underflow

(Wrap or wraparound)
Integer constant overflow

Integer conversion overflow

Integer overflow

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow
192 Integer coercion error Integer conversion overflow

Integer overflow

Sign change integer conversion overflow

Tainted sign change conversion

Unsigned integer conversion overflow

Unsigned integer overflow
194 Unexpected sign

extension
Sign change integer conversion overflow

Tainted sign change conversion
195 Signed to unsigned

conversion error
Sign change integer conversion overflow

Tainted sign change conversion
196 Unsigned to signed

conversion error
Sign change integer conversion overflow

 CWE Coding Standard and Polyspace Results

9-83

https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
197 Numeric truncation

error
Float conversion overflow

Integer conversion overflow

Unsigned integer conversion overflow
198 Missing byte reordering when transferring

data
226 Sensitive information

uncleared before
release

Uncleared sensitive data in stack

227 Improper fulfillment of
API contract

Invalid use of standard library floating
point routine

Invalid use of standard library integer
routine

Invalid use of standard library memory
routine

Invalid use of standard library routine

Invalid use of standard library string
routine

Writing to const qualified object
240 Improper handling of

inconsistent structural
elements

Mismatch between data length and size

242 Use of inherently
dangerous function

Use of dangerous standard function

243 Creation of chroot jail
without changing
working directory

File manipulation after chroot without chdir

244 Improper clearing of
heap memory before
release

Sensitive heap memory not cleared before
release

250 Execution with
unnecessary privileges

Bad order of dropping privileges

Privilege drop not verified
251 Often misused: string

management
Destination buffer overflow in string
manipulation

252 Unchecked return value Returned value of a sensitive function not
checked

9 Configure Bug Finder Checkers

9-84

https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/198.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/240.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/243.html
https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/251.html
https://cwe.mitre.org/data/definitions/252.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
253 Incorrect Check of

Function Return Value
Errno not checked

Errno not reset

Returned value of a sensitive function not
checked

Unprotected dynamic memory allocation

Unsafe conversion from string to numerical
value

273 Improper check for
dropped privileges

Privilege drop not verified

287 Improper
Authentication

X.509 peer certificate not checked

297 Improper Validation of
Certificate with Host
Mismatch

Server certificate common name not checked

304 Missing Critical Step in
Authentication

TLS/SSL connection method not set

 CWE Coding Standard and Polyspace Results

9-85

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/273.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/297.html
https://cwe.mitre.org/data/definitions/304.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
310 Cryptographic issues Constant block cipher initialization vector

Constant cipher key

Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for digest
operation

Incompatible padding for RSA algorithm
operation

Incorrect key for cryptographic algorithm

Missing blinding for RSA algorithm

Missing block cipher initialization vector

Missing certification authority list

Missing cipher algorithm

Missing cipher key

Missing data for encryption, decryption or
signing operation

Missing padding for RSA algorithm

Missing parameters for key generation

Missing peer key

Missing private key

Missing public key

Missing X.509 certificate

Nonsecure hash algorithm

Nonsecure parameters for key generation

Nonsecure RSA public exponent

Nonsecure SSL/TLS protocol

Predictable block cipher initialization
vector

Predictable cipher key

Weak cipher algorithm

9 Configure Bug Finder Checkers

9-86

https://cwe.mitre.org/data/definitions/310.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
Weak cipher mode

Weak padding for RSA algorithm
311 Missing encryption of

sensitive data
Missing cipher data to process

Missing cipher final step
312 Cleartext Storage of

Sensitive Information
Sensitive heap memory not cleared before
release

Uncleared sensitive data in stack
316 Cleartext Storage of

Sensitive Information in
Memory

Sensitive heap memory not cleared before
release

Uncleared sensitive data in stack
320 Key management errors Constant cipher key

Missing cipher key

Missing peer key

Missing private key

Missing public key
321 Use of hard-coded

cryptographic key
Constant cipher key

322 Key Exchange without
Entity Authentication

TLS/SSL connection method not set

 CWE Coding Standard and Polyspace Results

9-87

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/316.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/322.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
325 Missing required

cryptographic step
Context initialized incorrectly for
cryptographic operation

Incorrect key for cryptographic algorithm

Missing block cipher initialization vector

Missing cipher data to process

Missing cipher final step

Missing cipher algorithm

Missing cipher key

Missing data for encryption, decryption or
signing operation

Missing parameters for key generation

No data added into context

Weak cipher algorithm

Weak cipher mode
326 Inadequate encryption

strength
Constant block cipher initialization vector

Constant cipher key

Missing blinding for RSA algorithm

Missing block cipher initialization vector

Missing padding for RSA algorithm

Nonsecure parameters for key generation

Nonsecure RSA public exponent

Predictable cipher key

Weak cipher algorithm

Weak cipher mode

Weak padding for RSA algorithm

9 Configure Bug Finder Checkers

9-88

https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/326.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
327 Use of a broken or risky

cryptographic algorithm
Missing padding for RSA algorithm

Nonsecure hash algorithm

Nonsecure parameters for key generation

Nonsecure RSA public exponent

Nonsecure SSL/TLS protocol

Unsafe standard encryption function

Weak cipher algorithm

Weak cipher mode

Weak padding for RSA algorithm
328 Reversible one-way

hash
Nonsecure hash algorithm

329 Not using a random IV
with CBC mode

Constant block cipher initialization vector

Missing block cipher initialization vector

Predictable block cipher initialization
vector

330 Use of insufficiently
random values

Deterministic random output from constant
seed

Predictable block cipher initialization
vector

Predictable cipher key

Predictable random output from predictable
seed

Vulnerable pseudo-random number generator
336 Same seed in PRNG Deterministic random output from constant

seed
337 Predictable seed in

PRNG
Predictable random output from predictable
seed

338 Use of cryptographically
weak pseudo-random
number generator
(PRNG)

Predictable block cipher initialization
vector

Predictable cipher key

Vulnerable pseudo-random number generator

 CWE Coding Standard and Polyspace Results

9-89

https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/328.html
https://cwe.mitre.org/data/definitions/329.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/336.html
https://cwe.mitre.org/data/definitions/337.html
https://cwe.mitre.org/data/definitions/338.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
353 Missing Support for

Integrity Check
Context initialized incorrectly for digest
operation

Nonsecure hash algorithm
354 Improper Validation of

Integrity Check Value
Context initialized incorrectly for digest
operation

362 Concurrent execution
using shared resource
with improper
synchronization ('Race
Condition')

File descriptor exposure to child process

Opening previously opened resource

364 Signal handler race
condition

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

Shared data access within signal handler
366 Race condition within a

thread
Data race including atomic operations

Data race through standard library function
call

Data race
367 Time-of-check time-of-

use (TOCTOU) race
condition

File access between time of check and use
(TOCTOU)

369 Divide by zero Float division by zero

Integer division by zero

Invalid use of standard library floating
point routine

Invalid use of standard library integer
routine

Tainted division operand

Tainted modulo operand

9 Configure Bug Finder Checkers

9-90

https://cwe.mitre.org/data/definitions/353.html
https://cwe.mitre.org/data/definitions/354.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/369.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
372 Incomplete internal

state distinction
Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for digest
operation

Incompatible padding for RSA algorithm
operation

Inconsistent cipher operations

Missing cipher data to process

Missing cipher final step

Missing data for encryption, decryption or
signing operation

Missing parameters for key generation
375 Returning a mutable

object to an untrusted
caller

Return of non const handle to encapsulated
data member

377 Insecure temporary file Use of non-secure temporary file
387 Signal errors Function called from signal handler not

asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

Return from computational exception signal
handler

Signal call from within signal handler
391 Unchecked error

condition
Errno not checked

398 Indicator of poor code
quality

Write without a further read

401 Improper release of
memory before
removing last reference

Memory leak

Thread-specific memory leak
404 Improper resource

shutdown or release
Invalid deletion of pointer

Invalid free of pointer

Memory leak

Mismatched alloc/dealloc functions on Windows

Thread-specific memory leak

 CWE Coding Standard and Polyspace Results

9-91

https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/398.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/404.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
413 Improper Resource

Locking
Data race

Data race including atomic operations

Data race through standard library function
call

Function called from signal handler not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict)

Opening previously opened resource

Shared data access within signal handler
415 Double free Deallocation of previously deallocated

pointer

Missing reset of a freed pointer
416 Use after free Missing reset of a freed pointer

Use of previously freed pointer
426 Untrusted search path Command executed from externally controlled

path

Library loaded from externally controlled
path

427 Uncontrolled search
path element

Execution of a binary from a relative path
can be controlled by an external actor

Library loaded from externally controlled
path

Load of library from a relative path can be
controlled by an external actor

Use of externally controlled environment
variable

456 Missing initialization of
a variable

Errno not reset

Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
457 Use of uninitialized

variable
Member not initialized in constructor

Non-initialized pointer

Non-initialized variable

9 Configure Bug Finder Checkers

9-92

https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/426.html
https://cwe.mitre.org/data/definitions/427.html
https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
465 Pointer Issues Unsafe conversion between pointer and integer
466 Return of pointer value

outside of expected
range

Array access out of bounds

Pointer access out of bounds

Unsafe conversion between pointer and integer
467 Use of sizeof() on a

pointer type
Possible misuse of sizeof

Wrong type used in sizeof
468 Incorrect pointer

scaling
Incorrect pointer scaling

469 Use of pointer
subtraction to
determine size

Subtraction or comparison between pointers to
different arrays

471 Modification of
assumed-immutable
data

Writing to const qualified object

474 Use of function with
inconsistent
implementations

Signal call from within signal handler

Use of obsolete standard function
475 Undefined behavior for

input to API
Copy of overlapping memory

476 NULL pointer
dereference

Null pointer

Tainted NULL or non-null-terminated string
477 Use of obsolete

functions
Use of obsolete standard function

478 Missing default case in
switch statement

Missing case for switch condition

479 Signal handler use of a
non-reentrant function

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

480 Use of incorrect
operator

Invalid use of = (assignment) operator

Invalid use of == (equality) operator
481 Assigning instead of

comparing
Invalid use of = (assignment) operator

482 Comparing instead of
assigning

Invalid use of == (equality) operator

483 Incorrect block
delimitation

Incorrectly indented statement

Semicolon on same line as if, for or while
statement

 CWE Coding Standard and Polyspace Results

9-93

https://cwe.mitre.org/data/definitions/465.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/467.html
https://cwe.mitre.org/data/definitions/468.html
https://cwe.mitre.org/data/definitions/469.html
https://cwe.mitre.org/data/definitions/471.html
https://cwe.mitre.org/data/definitions/474.html
https://cwe.mitre.org/data/definitions/475.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/477.html
https://cwe.mitre.org/data/definitions/478.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/481.html
https://cwe.mitre.org/data/definitions/482.html
https://cwe.mitre.org/data/definitions/483.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
484 Omitted break

statement in switch
Missing break of switch case

522 Insufficiently Protected
Credentials

Constant cipher key

Nonsecure hash algorithm

Nonsecure parameters for key generation

Nonsecure RSA public exponent

Nonsecure SSL/TLS protocol

Unsafe standard encryption function
532 Information exposure

through log files
Sensitive data printed out

534 Information exposure
through debug log files

Sensitive data printed out

535 Information exposure
through shell error
message

Sensitive data printed out

547 Use of hard-coded,
security-relevant
constants

Hard coded buffer size

Hard coded loop boundary
558 Use of getlogin() in

multithreaded
application

Unsafe standard function

560 Use of umask() with
chmod-style argument

Umask used with chmod-style arguments

561 Dead code Dead code

Static uncalled function

Unreachable code
562 Return of stack variable

address
Pointer or reference to stack variable
leaving scope

Use of automatic variable as putenv-family
function argument

9 Configure Bug Finder Checkers

9-94

https://cwe.mitre.org/data/definitions/484.html
https://cwe.mitre.org/data/definitions/522.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/534.html
https://cwe.mitre.org/data/definitions/535.html
https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/558.html
https://cwe.mitre.org/data/definitions/560.html
https://cwe.mitre.org/data/definitions/561.html
https://cwe.mitre.org/data/definitions/562.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
573 Improper following of

specification by caller
Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for digest
operation

Incompatible padding for RSA algorithm
operation

Incorrect key for cryptographic algorithm

Missing blinding for RSA algorithm

Missing cipher data to process

Missing cipher final step

Missing cipher algorithm

Missing cipher key

Missing data for encryption, decryption or
signing operation

Missing final step after hashing update
operation

Missing hash algorithm

Missing parameters for key generation

Missing peer key

Missing private key for X.509 certificate

Missing private key

Missing public key

Modification of internal buffer returned from
nonreentrant standard function

TLS/SSL connection method not set

TLS/SSL connection method set incorrectly
587 Assignment of a fixed

address to a pointer
Function pointer assigned with absolute
address

Unsafe conversion between pointer and integer
590 Free of memory not on

the heap
Invalid free of pointer

 CWE Coding Standard and Polyspace Results

9-95

https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/587.html
https://cwe.mitre.org/data/definitions/590.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
606 Unchecked input for

loop condition
Loop bounded with tainted value

628 Function call with
incorrectly specified
arguments

Bad file access mode or status

Copy of overlapping memory

Invalid va_list argument

Modification of internal buffer returned from
nonreentrant standard function

Standard function call with incorrect
arguments

658 See “Mapping Between CWE-658 or 659 and Polyspace Results” on page 9-103.
659 See “Mapping Between CWE-658 or 659 and Polyspace Results” on page 9-103.
663 Use of a non-reentrant

function in a concurrent
context

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

Unsafe standard encryption function

Unsafe standard function
664 Improper control of a

resource through its
lifetime

Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for digest
operation

Incompatible padding for RSA algorithm
operation

Inconsistent cipher operations

Incorrect key for cryptographic algorithm

Missing cipher data to process

Missing cipher final step

Missing cipher key

Missing peer key

Missing private key

Missing public key

9 Configure Bug Finder Checkers

9-96

https://cwe.mitre.org/data/definitions/606.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/659.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/664.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
665 Improper initialization Call to memset with unintended value

Improper array initialization

Overlapping assignment

Use of memset with size argument zero
666 Operation on resource

in wrong phase of
lifetime

Incorrect order of network connection
operations

667 Improper locking Blocking operation while holding lock

Destruction of locked mutex

Missing unlock
672 Operation on a resource

after expiration or
release

Closing a previously closed resource

Use of previously closed resource
675 Duplicate operations on

resource
Opening previously opened resource

676 Use of potentially
dangerous function

Unsafe conversion from string to numerical
value

Use of dangerous standard function
681 Incorrect conversion

between numeric types
Float conversion overflow

Precision loss in integer to float conversion
682 Incorrect calculation Absorption of float operand

Bitwise operation on negative value

Float overflow

Invalid use of standard library floating
point routine

Invalid use of standard library integer
routine

Tainted modulo operand

Use of plain char type for numerical value
683 Function Call With

Incorrect Order of
Arguments

Call to memset with unintended value

Format string specifiers and arguments
mismatch

 CWE Coding Standard and Polyspace Results

9-97

https://cwe.mitre.org/data/definitions/665.html
https://cwe.mitre.org/data/definitions/666.html
https://cwe.mitre.org/data/definitions/667.html
https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/675.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/683.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
685 Function call with

incorrect number of
arguments

Declaration mismatch

Format string specifiers and arguments
mismatch

Standard function call with incorrect
arguments

Too many va_arg calls for current argument
list

686 Function call with
incorrect argument type

Bad file access mode or status

Declaration mismatch

Format string specifiers and arguments
mismatch

Incorrect data type passed to va_arg

Standard function call with incorrect
arguments

Use of automatic variable as putenv-family
function argument

Writing to const qualified object
687 Function call with

incorrectly specified
argument value

Copy of overlapping memory

Standard function call with incorrect
arguments

Variable length array with nonpositive size
690 Unchecked return value

to null pointer
dereference

Invalid use of standard library memory
routine

Invalid use of standard library routine

Invalid use of standard library string
routine

Null pointer

Returned value of a sensitive function not
checked

Standard function call with incorrect
arguments

Tainted NULL or non-null-terminated string

Unprotected dynamic memory allocation

9 Configure Bug Finder Checkers

9-98

https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/687.html
https://cwe.mitre.org/data/definitions/690.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
691 Insufficient control flow

management
Use of setjmp/longjmp

693 Protection mechanism
failure

Nonsecure SSL/TLS protocol

696 Incorrect behavior
order

Bad order of dropping privileges

703 Improper check or
handling of exceptional
conditions

Errno not reset

Misuse of errno
704 Incorrect type

conversion or cast
Character value absorbed into EOF

Misuse of sign-extended character value

Precision loss in integer to float conversion

Qualifier removed in conversion

Unreliable cast of pointer

Wrong allocated object size for cast
705 Incorrect control flow

scoping
Abnormal termination of exit handler

710 Coding standard
violation

Bitwise and arithmetic operation on the same
data

732 Incorrect permission
assignment for critical
resource

Vulnerable permission assignments

754 Improper check for
unusual or exceptional
conditions

Returned value of a sensitive function not
checked

755 Improper handling of
exceptional conditions

Exception handler hidden by previous handler

758 Reliance on undefined,
unspecified, or
implementation-defined
behavior

Bitwise operation on negative value

Unsafe conversion between pointer and integer

Use of plain char type for numerical value
759 Use of a One-Way Hash

without a Salt
Missing salt for hashing operation

762 Mismatched memory
management routines

Invalid free of pointer

Mismatched alloc/dealloc functions on Windows
764 Multiple locks of a

critical resource
Double lock

765 Multiple unlocks of a
critical resource

Double unlock

 CWE Coding Standard and Polyspace Results

9-99

https://cwe.mitre.org/data/definitions/691.html
https://cwe.mitre.org/data/definitions/693.html
https://cwe.mitre.org/data/definitions/696.html
https://cwe.mitre.org/data/definitions/703.html
https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/705.html
https://cwe.mitre.org/data/definitions/710.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/755.html
https://cwe.mitre.org/data/definitions/758.html
https://cwe.mitre.org/data/definitions/759.html
https://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/764.html
https://cwe.mitre.org/data/definitions/765.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
767 Access to critical

private variable via
public method

Return of non const handle to encapsulated
data member

770 Allocation of resources
without limits or
throttling

Tainted size of variable length array

772 Missing release of
resource after effective
lifetime

Resource leak

780 Use of rsa algorithm
without oaep

Missing padding for RSA algorithm

Weak padding for RSA algorithm
783 Operator precedence

logic error
Possibly unintended evaluation of expression
because of operator precedence rules

785 Use of path
manipulation function
without maximum-sized
buffer

Use of path manipulation function without
maximum sized buffer checking

786 Access of memory
location before start of
buffer

Destination buffer underflow in string
manipulation

787 Out-of-bounds write Destination buffer overflow in string
manipulation

Destination buffer underflow in string
manipulation

789 Uncontrolled memory
allocation

Memory allocation with tainted size

Tainted size of variable length array

Unprotected dynamic memory allocation
805 Buffer access with

incorrect length value
Hard-coded object size used to manipulate
memory

822 Untrusted pointer
dereference

Tainted NULL or non-null-terminated string

823 Use of out-of-range
pointer offset

Pointer access out of bounds

Pointer dereference with tainted offset
824 Access of uninitialized

pointer
Non-initialized pointer

9 Configure Bug Finder Checkers

9-100

https://cwe.mitre.org/data/definitions/767.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/772.html
https://cwe.mitre.org/data/definitions/780.html
https://cwe.mitre.org/data/definitions/783.html
https://cwe.mitre.org/data/definitions/785.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/789.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/822.html
https://cwe.mitre.org/data/definitions/823.html
https://cwe.mitre.org/data/definitions/824.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
825 Expired Pointer

Dereference
Accessing object with temporary lifetime

Deallocation of previously deallocated
pointer

Environment pointer invalidated by previous
operation

Missing reset of a freed pointer

Pointer or reference to stack variable
leaving scope

Use of automatic variable as putenv-family
function argument

Use of previously freed pointer
826 Premature release of

resource during
expected lifetime

Closing a previously closed resource

Destruction of locked mutex

Use of previously closed resource
828 Signal handler with

functionality that is not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

832 Unlock of a resource
that is not locked

Missing lock

833 Deadlock Deadlock
843 Access of resource

using incompatible type
('Type confusion')

Unreliable cast of pointer

872 CERT C++ Secure
Coding Section 04 -
Integers (INT)

Invalid use of standard library integer
routine

873 CERT C++ Secure
Coding Section 05 -
Floating point
arithmetic (FLP)

Absorption of float operand

Float overflow

Floating point comparison with equality
operators

Invalid use of standard library floating
point routine

 CWE Coding Standard and Polyspace Results

9-101

https://cwe.mitre.org/data/definitions/825.html
https://cwe.mitre.org/data/definitions/826.html
https://cwe.mitre.org/data/definitions/828.html
https://cwe.mitre.org/data/definitions/832.html
https://cwe.mitre.org/data/definitions/833.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/872.html
https://cwe.mitre.org/data/definitions/873.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
908 Use of uninitialized

resource
Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
910 Use of expired file

descriptor
Closing a previously closed resource

Standard function call with incorrect
arguments

Use of previously closed resource
922 Insecure Storage of

Sensitive Information
File manipulation after chroot without chdir

Umask used with chmod-style arguments

Use of non-secure temporary file

Vulnerable permission assignments

9 Configure Bug Finder Checkers

9-102

https://cwe.mitre.org/data/definitions/908.html
https://cwe.mitre.org/data/definitions/910.html
https://cwe.mitre.org/data/definitions/922.html

Mapping Between CWE-658 or 659 and Polyspace Results

CWE-658: Weaknesses in Software Written in C
CWE-658 is a subset of CWE IDs found in C programs that are not common to all languages. See
CWE-658.

The following table lists the CWE IDs (version 3.3) from this subset that are addressed by Polyspace
Bug Finder, with its corresponding defect checkers.

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
119 Improper restriction of

operations within the
bounds of a memory
buffer

Array access out of bounds

Pointer access out of bounds

120 Buffer copy without
checking size of input
('Classic buffer
overflow')

Invalid use of standard library memory
routine

Invalid use of standard library string
routine

Tainted NULL or non-null-terminated string
121 Stack-based buffer

overflow
Array access with tainted index

Destination buffer overflow in string
manipulation

122 Heap-based buffer
overflow

Pointer dereference with tainted offset

124 Buffer underwrite
('Buffer underflow')

Array access with tainted index

Buffer overflow from incorrect string format
specifier

Destination buffer underflow in string
manipulation

Pointer dereference with tainted offset
125 Out-of-bounds read Array access with tainted index

Buffer overflow from incorrect string format
specifier

Destination buffer overflow in string
manipulation

126 Buffer over-read Buffer overflow from incorrect string format
specifier

127 Buffer under-read Buffer overflow from incorrect string format
specifier

 Mapping Between CWE-658 or 659 and Polyspace Results

9-103

https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
128 Wrap-around error Integer constant overflow

Integer conversion overflow

Integer overflow

Memory allocation with tainted size

Tainted sign change conversion

Tainted size of variable length array

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow
129 Improper validation of

array index
Array access with tainted index

Pointer dereference with tainted offset
130 Improper handling of

length parameter
inconsistency

Mismatch between data length and size

131 Incorrect calculation of
buffer size

Array access out of bounds

Memory allocation with tainted size

Pointer access out of bounds

Tainted sign change conversion

Tainted size of variable length array

Unsigned integer conversion overflow

Unsigned integer overflow
134 Uncontrolled format

string
Tainted string format

135 Incorrect Calculation of
Multi-Byte String
Length

Destination buffer overflow in string
manipulation

Misuse of narrow or wide character string

Unreliable cast of pointer
170 Improper null

termination
Missing null in string array

Misuse of readlink()

Tainted NULL or non-null-terminated string

9 Configure Bug Finder Checkers

9-104

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/170.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
188 Reliance on data/

memory layout
Invalid assumptions about memory organization

Memory comparison of padding data

Memory comparison of strings

Missing byte reordering when transferring
data

Pointer access out of bounds
191 Integer underflow

(Wrap or wraparound)
Integer constant overflow

Integer conversion overflow

Integer overflow

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow
192 Integer coercion error Integer conversion overflow

Integer overflow

Sign change integer conversion overflow

Tainted sign change conversion

Unsigned integer conversion overflow

Unsigned integer overflow
194 Unexpected sign

extension
Sign change integer conversion overflow

Tainted sign change conversion
195 Signed to unsigned

conversion error
Sign change integer conversion overflow

Tainted sign change conversion
196 Unsigned to signed

conversion error
Sign change integer conversion overflow

197 Numeric truncation
error

Float conversion overflow

Integer conversion overflow

Unsigned integer conversion overflow
242 Use of inherently

dangerous function
Use of dangerous standard function

243 Creation of chroot jail
without changing
working directory

File manipulation after chroot without chdir

 Mapping Between CWE-658 or 659 and Polyspace Results

9-105

https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/243.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
244 Improper clearing of

heap memory before
release

Sensitive heap memory not cleared before
release

362 Concurrent execution
using shared resource
with improper
synchronization ('Race
Condition')

File descriptor exposure to child process

Opening previously opened resource

364 Signal handler race
condition

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

Shared data access within signal handler
366 Race condition within a

thread
Data race including atomic operations

Data race through standard library function
call

Data race
375 Returning a mutable

object to an untrusted
caller

Return of non const handle to encapsulated
data member

401 Improper release of
memory before
removing last reference

Memory leak

Thread-specific memory leak
415 Double free Deallocation of previously deallocated

pointer

Missing reset of a freed pointer
416 Use after free Missing reset of a freed pointer

Use of previously freed pointer
457 Use of uninitialized

variable
Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
466 Return of pointer value

outside of expected
range

Array access out of bounds

Pointer access out of bounds

Unsafe conversion between pointer and integer
467 Use of sizeof() on a

pointer type
Possible misuse of sizeof

Wrong type used in sizeof

9 Configure Bug Finder Checkers

9-106

https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/467.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
468 Incorrect pointer

scaling
Incorrect pointer scaling

469 Use of pointer
subtraction to
determine size

Subtraction or comparison between pointers to
different arrays

474 Use of function with
inconsistent
implementations

Signal call from within signal handler

Use of obsolete standard function
476 NULL pointer

dereference
Null pointer

Tainted NULL or non-null-terminated string
478 Missing default case in

switch statement
Missing case for switch condition

479 Signal handler use of a
non-reentrant function

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

480 Use of incorrect
operator

Invalid use of = (assignment) operator

Invalid use of == (equality) operator
481 Assigning instead of

comparing
Invalid use of = (assignment) operator

482 Comparing instead of
assigning

Invalid use of == (equality) operator

483 Incorrect block
delimitation

Incorrectly indented statement

Semicolon on same line as if, for or while
statement

484 Omitted break
statement in switch

Missing break of switch case

558 Use of getlogin() in
multithreaded
application

Unsafe standard function

560 Use of umask() with
chmod-style argument

Umask used with chmod-style arguments

562 Return of stack variable
address

Pointer or reference to stack variable
leaving scope

Use of automatic variable as putenv-family
function argument

587 Assignment of a fixed
address to a pointer

Function pointer assigned with absolute
address

Unsafe conversion between pointer and integer

 Mapping Between CWE-658 or 659 and Polyspace Results

9-107

https://cwe.mitre.org/data/definitions/468.html
https://cwe.mitre.org/data/definitions/469.html
https://cwe.mitre.org/data/definitions/474.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/478.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/481.html
https://cwe.mitre.org/data/definitions/482.html
https://cwe.mitre.org/data/definitions/483.html
https://cwe.mitre.org/data/definitions/484.html
https://cwe.mitre.org/data/definitions/558.html
https://cwe.mitre.org/data/definitions/560.html
https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/587.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
676 Use of potentially

dangerous function
Unsafe conversion from string to numerical
value

Use of dangerous standard function
685 Function call with

incorrect number of
arguments

Declaration mismatch

Format string specifiers and arguments
mismatch

Standard function call with incorrect
arguments

Too many va_arg calls for current argument
list

690 Unchecked return value
to null pointer
dereference

Invalid use of standard library memory
routine

Invalid use of standard library routine

Invalid use of standard library string
routine

Null pointer

Returned value of a sensitive function not
checked

Standard function call with incorrect
arguments

Tainted NULL or non-null-terminated string

Unprotected dynamic memory allocation
704 Incorrect type

conversion or cast
Character value absorbed into EOF

Misuse of sign-extended character value

Precision loss in integer to float conversion

Qualifier removed in conversion

Unreliable cast of pointer

Wrong allocated object size for cast
762 Mismatched memory

management routines
Invalid free of pointer

Mismatched alloc/dealloc functions on Windows
783 Operator precedence

logic error
Possibly unintended evaluation of expression
because of operator precedence rules

9 Configure Bug Finder Checkers

9-108

https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/783.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
785 Use of path

manipulation function
without maximum-sized
buffer

Use of path manipulation function without
maximum sized buffer checking

787 Out-of-bounds write Destination buffer overflow in string
manipulation

Destination buffer underflow in string
manipulation

789 Uncontrolled memory
allocation

Memory allocation with tainted size

Tainted size of variable length array

Unprotected dynamic memory allocation
805 Buffer access with

incorrect length value
Hard-coded object size used to manipulate
memory

843 Access of resource
using incompatible type
('Type confusion')

Unreliable cast of pointer

910 Use of expired file
descriptor

Closing a previously closed resource

Standard function call with incorrect
arguments

Use of previously closed resource

CWE-659: Weaknesses in Software Written in C++
CWE-659 is a subset of CWE IDs found in C++ programs that are not common to all languages. See
CWE-659.

The following table lists the CWE IDs (version 3.3) from this subset that are addressed by Polyspace
Bug Finder, with its corresponding defect checkers.

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
119 Improper restriction of

operations within the
bounds of a memory
buffer

Array access out of bounds

Pointer access out of bounds

120 Buffer copy without
checking size of input
('Classic buffer
overflow')

Invalid use of standard library memory
routine

Invalid use of standard library string
routine

Tainted NULL or non-null-terminated string

 Mapping Between CWE-658 or 659 and Polyspace Results

9-109

https://cwe.mitre.org/data/definitions/785.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/789.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/910.html
https://cwe.mitre.org/data/definitions/659.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
121 Stack-based buffer

overflow
Array access with tainted index

Destination buffer overflow in string
manipulation

122 Heap-based buffer
overflow

Pointer dereference with tainted offset

124 Buffer underwrite
('Buffer underflow')

Array access with tainted index

Buffer overflow from incorrect string format
specifier

Destination buffer underflow in string
manipulation

Pointer dereference with tainted offset
125 Out-of-bounds read Array access with tainted index

Buffer overflow from incorrect string format
specifier

Destination buffer overflow in string
manipulation

126 Buffer over-read Buffer overflow from incorrect string format
specifier

127 Buffer under-read Buffer overflow from incorrect string format
specifier

128 Wrap-around error Integer constant overflow

Integer conversion overflow

Integer overflow

Memory allocation with tainted size

Tainted sign change conversion

Tainted size of variable length array

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow
129 Improper validation of

array index
Array access with tainted index

Pointer dereference with tainted offset
130 Improper handling of

length parameter
inconsistency

Mismatch between data length and size

9 Configure Bug Finder Checkers

9-110

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/130.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
131 Incorrect calculation of

buffer size
Array access out of bounds

Memory allocation with tainted size

Pointer access out of bounds

Tainted sign change conversion

Tainted size of variable length array

Unsigned integer conversion overflow

Unsigned integer overflow
134 Uncontrolled format

string
Tainted string format

135 Incorrect Calculation of
Multi-Byte String
Length

Destination buffer overflow in string
manipulation

Misuse of narrow or wide character string

Unreliable cast of pointer
170 Improper null

termination
Missing null in string array

Misuse of readlink()

Tainted NULL or non-null-terminated string
188 Reliance on data/

memory layout
Invalid assumptions about memory organization

Memory comparison of padding data

Memory comparison of strings

Missing byte reordering when transferring
data

Pointer access out of bounds
191 Integer underflow

(Wrap or wraparound)
Integer constant overflow

Integer conversion overflow

Integer overflow

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow

 Mapping Between CWE-658 or 659 and Polyspace Results

9-111

https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/191.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
192 Integer coercion error Integer conversion overflow

Integer overflow

Sign change integer conversion overflow

Tainted sign change conversion

Unsigned integer conversion overflow

Unsigned integer overflow
194 Unexpected sign

extension
Sign change integer conversion overflow

Tainted sign change conversion
195 Signed to unsigned

conversion error
Sign change integer conversion overflow

Tainted sign change conversion
196 Unsigned to signed

conversion error
Sign change integer conversion overflow

197 Numeric truncation
error

Float conversion overflow

Integer conversion overflow

Unsigned integer conversion overflow
242 Use of inherently

dangerous function
Use of dangerous standard function

243 Creation of chroot jail
without changing
working directory

File manipulation after chroot without chdir

244 Improper clearing of
heap memory before
release

Sensitive heap memory not cleared before
release

362 Concurrent execution
using shared resource
with improper
synchronization ('Race
Condition')

File descriptor exposure to child process

Opening previously opened resource

364 Signal handler race
condition

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

Shared data access within signal handler

9 Configure Bug Finder Checkers

9-112

https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/243.html
https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/364.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
366 Race condition within a

thread
Data race including atomic operations

Data race through standard library function
call

Data race
375 Returning a mutable

object to an untrusted
caller

Return of non const handle to encapsulated
data member

401 Improper release of
memory before
removing last reference

Memory leak

Thread-specific memory leak
415 Double free Deallocation of previously deallocated

pointer

Missing reset of a freed pointer
416 Use after free Missing reset of a freed pointer

Use of previously freed pointer
457 Use of uninitialized

variable
Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
466 Return of pointer value

outside of expected
range

Array access out of bounds

Pointer access out of bounds

Unsafe conversion between pointer and integer
467 Use of sizeof() on a

pointer type
Possible misuse of sizeof

Wrong type used in sizeof
468 Incorrect pointer

scaling
Incorrect pointer scaling

469 Use of pointer
subtraction to
determine size

Subtraction or comparison between pointers to
different arrays

476 NULL pointer
dereference

Null pointer

Tainted NULL or non-null-terminated string
478 Missing default case in

switch statement
Missing case for switch condition

479 Signal handler use of a
non-reentrant function

Function called from signal handler not
asynchronous-safe (strict)

Function called from signal handler not
asynchronous-safe

 Mapping Between CWE-658 or 659 and Polyspace Results

9-113

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/467.html
https://cwe.mitre.org/data/definitions/468.html
https://cwe.mitre.org/data/definitions/469.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/478.html
https://cwe.mitre.org/data/definitions/479.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
480 Use of incorrect

operator
Invalid use of = (assignment) operator

Invalid use of == (equality) operator
481 Assigning instead of

comparing
Invalid use of = (assignment) operator

482 Comparing instead of
assigning

Invalid use of == (equality) operator

483 Incorrect block
delimitation

Incorrectly indented statement

Semicolon on same line as if, for or while
statement

484 Omitted break
statement in switch

Missing break of switch case

558 Use of getlogin() in
multithreaded
application

Unsafe standard function

562 Return of stack variable
address

Pointer or reference to stack variable
leaving scope

Use of automatic variable as putenv-family
function argument

587 Assignment of a fixed
address to a pointer

Function pointer assigned with absolute
address

Unsafe conversion between pointer and integer
676 Use of potentially

dangerous function
Unsafe conversion from string to numerical
value

Use of dangerous standard function
690 Unchecked return value

to null pointer
dereference

Invalid use of standard library memory
routine

Invalid use of standard library routine

Invalid use of standard library string
routine

Null pointer

Returned value of a sensitive function not
checked

Standard function call with incorrect
arguments

Tainted NULL or non-null-terminated string

Unprotected dynamic memory allocation

9 Configure Bug Finder Checkers

9-114

https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/481.html
https://cwe.mitre.org/data/definitions/482.html
https://cwe.mitre.org/data/definitions/483.html
https://cwe.mitre.org/data/definitions/484.html
https://cwe.mitre.org/data/definitions/558.html
https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/587.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/690.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
704 Incorrect type

conversion or cast
Character value absorbed into EOF

Misuse of sign-extended character value

Precision loss in integer to float conversion

Qualifier removed in conversion

Unreliable cast of pointer

Wrong allocated object size for cast
762 Mismatched memory

management routines
Invalid free of pointer

Mismatched alloc/dealloc functions on Windows
767 Access to critical

private variable via
public method

Return of non const handle to encapsulated
data member

783 Operator precedence
logic error

Possibly unintended evaluation of expression
because of operator precedence rules

785 Use of path
manipulation function
without maximum-sized
buffer

Use of path manipulation function without
maximum sized buffer checking

787 Out-of-bounds write Destination buffer overflow in string
manipulation

Destination buffer underflow in string
manipulation

789 Uncontrolled memory
allocation

Memory allocation with tainted size

Tainted size of variable length array

Unprotected dynamic memory allocation
805 Buffer access with

incorrect length value
Hard-coded object size used to manipulate
memory

843 Access of resource
using incompatible type
('Type confusion')

Unreliable cast of pointer

910 Use of expired file
descriptor

Closing a previously closed resource

Standard function call with incorrect
arguments

Use of previously closed resource

 Mapping Between CWE-658 or 659 and Polyspace Results

9-115

https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/767.html
https://cwe.mitre.org/data/definitions/783.html
https://cwe.mitre.org/data/definitions/785.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/789.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/910.html

See Also

More About
• “CWE Coding Standard and Polyspace Results” on page 9-78

9 Configure Bug Finder Checkers

9-116

Configure Comment Import from
Previous Results

• “Import Review Information from Previous Polyspace Analysis” on page 10-2
• “Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results” on page 10-6

10

Import Review Information from Previous Polyspace Analysis
After you have reviewed analysis results, you can reuse information from the review for subsequent
analyses. If you specify a result status or severity or add notes in your results file, they carry over to
the results of the next analysis on the same project. If you add the same information as comments to
your code (annotate), they carry over to any subsequent analysis of the code, whether in the same
project or not. You can also hide results using code annotations. For more information on
commenting, see Polyspace Bug Finder Access documentation.

This topic shows how to import review information from one result file to another. Importing the
review information saves you from reviewing already justified results. For instance, after you import

the information, on the Results List pane (user interface of desktop products), clicking the icon
skips justified results. Using this icon, you can browse through unreviewed results. You can also filter
the justified checks from display.

Automatic Import from Last Analysis
By default, in the Polyspace user interface (desktop products only), review information is imported
automatically from the most recent analysis on the project module. You can disable this default
behavior.

1 Select Tools > Preferences, which opens the Polyspace Preferences dialog box.
2 Select the Project and Results Folder tab.
3 Under Import Comments, clear Automatically import comments from last verification.
4 Click OK.

If you upload results to the Polyspace Access web interface, review information from the last run of
the same project are applied to the current run. You cannot disable the automatic import.

If you run analysis at the command line (and do not upload results to the Polyspace Access web
interface), you have to explicitly import from another set of results. See “Command Line” on page 10-
3.

Import from Another Analysis Result
You can import review information directly from another Polyspace result to the current result.

If a result is found in both a Bug Finder and Code Prover analysis, you can add review information to
the Bug Finder result and import to the Code Prover result. For instance, most coding rule checkers
are common to Bug Finder and Code Prover. You can add review information to coding rule violations
in Bug Finder and import to the same violations in Code Prover.

User Interface (Desktop Products Only)

To import review information from another set of results:

10 Configure Comment Import from Previous Results

10-2

1 Open the current analysis results.
2 Select Tools > Import Comments.
3 Navigate to the folder containing your previous results.
4 Select the other results file (with extension .psbf or .pscp) and then click Open.

The review information from the previous results are imported into the current results.

Command Line

Use the option -import-comments during analysis to import comments from a previous verification.

To import review information from multiple results, use the polyspace-comments-import
command.

Import Algorithm
You can directly import review information from another set of results into the current results.
However, it is possible that part of your review information is not imported to a subsequent analysis
because:

• You have changed your source code so that the line with a previous result is not exactly identical
to the line in the current run.

The comment import tool accounts for additional code that simply shifts an existing line. For
instance, the tool recognizes that line 10 in Run 1 and line 12 in Run 2 have the same statement. If
a division by zero occurs on line 10 in Run 1 and you have not fixed the issue in Run 2, the result
along with associated review information are imported to line 12 in Run 2.

• Run 1:

10 baseLine = min/numRecipients;
11
12

• Run 2:

10 /* Calculate a baseline per recipient
11 based on minimum available resources */
12 baseLine = min/numRecipients;

However, if you change the line content itself, for instance, change numRecipient to
numReceiver, the result and review information are not imported.

• You have changed your source code so that the Code Prover result color has changed.
• You entered new review information for the same result.

If the content of a line does not change and shows the same result as the previous analysis, the
review information is imported. In unlikely scenarios, you might get the same result on the same line
despite changing previous lines that lead to the result. Your review information from a previous
analysis is then imported to the new result. If you justified the previous result with a status such as
Not a defect, it is likely that you want to continue this justification with the new result. For

 Import Review Information from Previous Polyspace Analysis

10-3

instance, if you accepted an overflow previously because you accounted for a wrap-around behavior
after the overflow, you are likely to accept the overflow whatever the cause. In a few cases, you might
want to review the result again and might not be aware that the result merits another review. To
avoid this situation:

• When justifying nonlocal results that are related to previous events, use careful judgement.
• For critical components, conduct periodic assessments of justified results to see if the
justifications still apply. Such assessments are useful specially for the Code Prover run-time
checks.

View Imported Review Information That Does Not Apply
In the Polyspace user interface (desktop products only), the Import Checks and Comments Report
highlights differences between two analysis results. When you import review information from a
previous analysis, you can see this report. If you have closed the report after an import, to review the
report again:

1 Select Window > Show/Hide View > Import Comments Report.

The Import Checks and Comments Report opens, highlighting differences in the two results.

2 Review the differences between the two results.

Your review information can differ between two results because of the following reasons:

• In Code Prover, if the check color changes, Polyspace imports the Comment field but not the
Status field. In addition, Polyspace imports the Severity and Justified fields depending on the
color change.

Color Change Severity Justified
Orange or red to green Not imported Imported
Gray to green Not imported Imported, if the Severity was

set to High, Medium or Low.
Red to orange or vice versa Imported Imported
Green to red/orange/gray Not imported Not imported

• If a result no longer appears in the code, Polyspace highlights only the change in the Import
Checks and Comments Report. It does not import review information from the previous result.

• If you have already entered different review information for the same check, Polyspace highlights
only the change in the Import Checks and Comments Report. It does not import review
information from the previous result.

10 Configure Comment Import from Previous Results

10-4

See Also
-import-comments | polyspace-comments-import

 Import Review Information from Previous Polyspace Analysis

10-5

Import Existing MISRA C: 2004 Justifications to MISRA C: 2012
Results

When you check your code for MISRA C: 2012 violations, Polyspace imports justifications of MISRA
C: 2004 violations from previous analyses (if they exist). You can upgrade from checking of MISRA C:
2004 rules to MISRA C: 2012 rules while retaining your justifications. For general rules on comment
import, see “Import Review Information from Previous Polyspace Analysis” on page 10-2.

The software maps MISRA C: 2004 Status, Severity, and Comment values that you added through
the user interface or code annotations to the corresponding MISRA C: 2012 results, if the results
exist. For more information about mapping, consult addendum one of the MISRA C: 2012 publication.

If you are transitioning from MISRA C: 2004 to MISRA C: 2012, you do not have to review results that
you have already justified.

10 Configure Comment Import from Previous Results

10-6

Mapping Multiple MISRA C: 2004 Annotations to the Same MISRA C:
2012 Result
When you justify MISRA C: 2004 violations by using code block syntax or multiple line annotation
syntax, and multiple violations map to the same MISRA C: 2012 rule, Polyspace does not import each
result justification. Instead, the software imports only one set of Status, Severity, and Comment
values and applies these values to all the instances of that particular MISRA C: 2012 rule violation.

For example, suppose that you analyze your code and find violations of MISRA C: 2004 rules 16.3 and
16.5. You can justify these results by using the annotation syntax where you enter a different status
and explanatory comment for each rule.

//polyspace-begin misra2004:16.3 [Status 1] "Explanatory comment 1"
//polyspace-begin misra2004:16.5 [Status 2] "Explanatory comment 2"

code block start;
/* This block of code contains violations of
MISRA C:2004 rules 16.3 and 16.5 */
code block end;

//polyspace-end misra2004:16.3
//polyspace-end misra2004:16.5

The previous violations map to MISRA C: 2012 rule 8.2. When you check your annotated code against
MISRA C: 2012 rules, Polyspace imports only the first line of annotations (for rule 16.3) and applies it
to all rule 8.2 results. The second line of annotations for rule 16.5 is ignored. In the Results List
pane, all violations of rule 8.2 have the Status column set to Status 1 and the Comment column
set to "Explanatory comment 1".

Note The Output Summary pane displays a warning message for every result where the imported
annotation conflicts with the original annotation. After you import your MISRA C: 2004 annotations,
check that a justified status has not been assigned to results you intend to investigate or fix.

See Also
Check MISRA C:2004 (-misra2) | Check MISRA C:2012 (-misra3)

 Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results

10-7

Troubleshooting in Polyspace Bug
Finder Server

• “License Error –4,0” on page 11-2
• “Read Error Information When Polyspace Analysis Stops” on page 11-3
• “Contact Technical Support About Issues with Running Polyspace” on page 11-4
• “Compiler Not Supported for Project Creation from Build Systems” on page 11-7
• “Slow Build Process When Polyspace Traces the Build” on page 11-13
• “Check if Polyspace Supports Build Scripts” on page 11-14
• “Troubleshooting Project Creation from MinGW Build” on page 11-16
• “Troubleshooting Project Creation from Visual Studio Build” on page 11-17
• “Polyspace Cannot Find the Server” on page 11-18
• “Job Manager Cannot Write to Database” on page 11-19
• “Undefined Identifier Error” on page 11-20
• “Unknown Function Prototype Error” on page 11-23
• “Error Related to #error Directive” on page 11-24
• “Large Object Error” on page 11-25
• “Errors Related to Generic Compiler” on page 11-27
• “Errors Related to Keil or IAR Compiler” on page 11-28
• “Errors Related to Diab Compiler” on page 11-29
• “Errors Related to Green Hills Compiler” on page 11-31
• “Errors Related to TASKING Compiler” on page 11-33
• “Errors from Conflicts with Polyspace Header Files” on page 11-35
• “Errors from Using Namespace std Without Prefix” on page 11-36
• “Errors from Assertion or Memory Allocation Functions” on page 11-37
• “Errors from In-Class Initialization (C++)” on page 11-38
• “Errors from Double Declarations of Standard Template Library Functions (C++)” on page 11-39
• “Errors Related to GNU Compiler” on page 11-40
• “Errors Related to Visual Compilers” on page 11-41
• “Error or Slow Runs from Disk Defragmentation and Anti-virus Software” on page 11-43
• “SQLite I/O Error” on page 11-45
• “Resolve -xml-annotations-description Errors” on page 11-46

11

License Error –4,0

Issue
When you try to run Polyspace, you get this error message:

License Error -4,0

Possible Cause: Another Polyspace Instance Running
You can open multiple instances of Polyspace, but you can only run one code analysis at a time.

If you try to run Polyspace processes from multiple windows, you will get a License Error –4,0
error.

Solution

Only run one analysis at a time, including any command-line or plugin analyses.

Possible Cause: Prior Polyspace Run in Simulink or MATLAB Coder
If you run Polyspace on generated code in the Simulink user interface or in the MATLAB Coder™ app,
you can get a license error if you try to run a subsequent analysis in the Polyspace user interface. You
get the error even if the previous run is over.

Solution

Run the subsequent analysis using the method that you used before, that is, in the Simulink user
interface or MATLAB Coder app.

If you want to run the analysis in the Polyspace user interface, close Simulink or MATLAB Coder and
then rerun the analysis.

11 Troubleshooting in Polyspace Bug Finder Server

11-2

Read Error Information When Polyspace Analysis Stops
When you run a Polyspace analysis on your C/C++ code, if one or more of your files fail to compile,
the analysis continues with the remaining files. You can choose to stop the analysis on compilation
errors using the option Stop analysis if a file does not compile (-stop-if-compile-
error).

However, it is more convenient to let the analysis complete and capture all compilation errors. In a
continuous integration process, you can send a notification to the build engineer with a list of
compilation errors.

The compilation errors are displayed in the analysis log in addition to the options used and the
various stages of analysis. The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. The lines that indicate errors begin with the
Error: string and the lines that indicate warnings begin with the Warning: string. Find these lines
and extract them to another text file for easier scanning.

See Also
File does not compile | Stop analysis if a file does not compile (-stop-if-
compile-error)

 Read Error Information When Polyspace Analysis Stops

11-3

Contact Technical Support About Issues with Running
Polyspace

To contact MathWorks Technical Support, use this page. You need a MathWorks Account login and
password. For faster turnaround with an issue in Polyspace, besides the required system information,
provide appropriate code that reproduces the issue or the verification log file.

Provide System Information
When you enter a support request, provide the following system information:

• Hardware configuration
• Operating system
• Polyspace and MATLAB license numbers
• Specific version numbers for Polyspace products
• Installed Bug Report patches

To obtain your configuration information, do one of the following:

• In the Polyspace user interface, select Help > About.
• At the command line, run the following command, replacing polyspaceroot with your Polyspace

installation folder:

• UNIX — polyspaceroot/polyspace/bin/polyspace-code-prover -ver
• Windows — polyspaceroot\polyspace\bin\polyspace-code-prover -ver

Provide Information About the Issue
Depending on the issue, provide appropriate artifacts to help Technical Support understand and
reproduce the issue.

Compilation Errors

If you face compilation issues with your project, see “Troubleshoot Compilation Errors”. If you are
still having issues, contact technical support with the following information:

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.log. It contains the error message, the options
used for the analysis and other relevant information.

• The source files related to the compilation error or the complete results folder if possible.

If you cannot provide the source files:

• Try to provide a screenshot of the source code section that causes the compilation issue.
• Try to reproduce the issue with a different code. Provide that code to technical support.

11 Troubleshooting in Polyspace Bug Finder Server

11-4

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

Errors in Project Creation from Build Systems

If you face errors in creating a project from your build system, see “Troubleshoot Project Creation”.

If you are still having issues, contact technical support with debug information. To provide the debug
information:

1 Run polyspace-configure at the command line with the option -easy-debug. For instance:

polyspace-configure options -easy-debug pathToFolder buildCommand

Here:

• options is the list of polyspace-configure options that you typically use.
• buildCommand is the build command that you use, for instance, make.
• pathToFolder is the folder where you want to store debug information, for instance,

C:\Temp\BuildLogs. After a polyspace-configure run, the path provided contains a
zipped file ending with pscfg-output.zip. The zipped file contains debug information only
and does not contain source files traced in the build.

Make sure that you do not use the option -verbose or -silent after -easy-debug. These
options reduce or modify the information logged and might make debugging difficult.

2 Send this zipped file ending with pscfg-output.zip to MathWorks Technical Support for
further debugging.

You can also create the zipped file with debug information during every polyspace-configure run
by creating an environment variable PS_CONFIGURE_OPTIONS and setting its value to:

-easy-debug pathToFolder

where pathToFolder is the folder where you want to store debug information.

Verification Result

If you are having trouble understanding a result, see “Polyspace Bug Finder Results” (Polyspace Bug
Finder Access).

If you are still having trouble understanding the result, contact technical support with the following
information:

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.log. It contains the options used for the analysis
and other relevant information.

• The source files related to the result or the complete results folder if possible.

If you cannot provide the source files:

• Try provide a screenshot of the relevant source code from the Source pane on the Polyspace
user interface.

• Try to reproduce the problem with a different code. Provide that code to technical support.

 Contact Technical Support About Issues with Running Polyspace

11-5

11 Troubleshooting in Polyspace Bug Finder Server

11-6

Compiler Not Supported for Project Creation from Build
Systems

Issue
Your compiler is not supported for automatic project creation from build commands.

Cause
For automatic project creation from your build system, your compiler configuration must be available
to Polyspace. Polyspace provides a compiler configuration file only for certain compilers.

For information on which compilers are supported, see “Requirements for Project Creation from Build
Systems” on page 5-20.

Solution
To enable automatic project creation for an unsupported compiler, you can write your own compiler
configuration file.

1 Copy one of the existing configuration files from polyspaceroot\polyspace\configure
\compiler_configuration\. Select the configuration that most closely corresponds to your
compiler using the .

2 Save the file as my_compiler.xml. my_compiler can be a name that helps you identify the file.

To edit the file, save it outside the installation folder. After you have finished editing, you must
copy the file back to polyspaceroot\polyspace\configure\compiler_configuration\.

3 Edit the contents of the file to represent your compiler. Replace the entries between the XML
elements with appropriate content.

4 After saving the edited XML file to polyspaceroot\polyspace\configure
\compiler_configuration\, create a project automatically using your build command.

If you see errors, for instance, compilation errors, contact MathWorks Technical Support. After
tracing your build command, the software compiles certain files using the compiler specifications
detected from your configuration file and build command. Compilation errors might indicate
issues in the configuration file.

Tip To quickly see if your compiler configuration file works, run the automatic project setup on a
sample build that does not take much time to complete. After you have set up a project with your
compiler configuration file, you can use this file for larger builds.

Elements of Compiler Configuration File

The following table lists the XML elements in the compiler configuration file file with a description of
what the content within the element represents.

 Compiler Not Supported for Project Creation from Build Systems

11-7

XML Element Content Description Content Example
for GNU C
Compiler

<compiler_names><name> ...

</name><compiler_names>

Name of the compiler executable.
This executable transforms
your .c files into object files. You
can add several binary names,
each in a separate <name>...</
name> element. The software
checks for each of the provided
names and uses the compiler
name for which it finds a match.

You must not specify the linker
binary inside the <name>...</
name> elements.

If the name that you specify is
present in an existing compiler
configuration file, an error occurs.
To avoid the error, use the
additional option -compiler-
config my_compiler.xml when
tracing the build so that the
software explicitly uses your
compiler configuration file.

• gcc
• gpp

<include_options><opt> ...

</opt></include_options>

The option that you use with your
compiler to specify include folders.

To specify options where the
argument immediately follows the
option, use an isPrefix attribute
for opt and set it to true.

-I

<system_include_options>

<opt> ... </opt>

</system_include_options>

The option that you use with your
compiler to specify system
headers.

To specify options where the
argument immediately follows the
option, use an isPrefix attribute
for opt and set it to true.

-isystem

<preinclude_options><opt> ...

</opt></preinclude_options>

The option that you use with your
compiler to force inclusion of a file
in the compiled object.

To specify options where the
argument immediately follows the
option, use an isPrefix attribute
for opt and set it to true.

-include

11 Troubleshooting in Polyspace Bug Finder Server

11-8

XML Element Content Description Content Example
for GNU C
Compiler

<define_options><opt> ...

</opt></define_options>

The option that you use with your
compiler to predefine a macro.

To specify options where the
argument immediately follows the
option, use an isPrefix attribute
for opt and set it to true.

-D

<undefine_options><opt> ...

</opt></undefine_options>

The option that you use with your
compiler to undo any previous
definition of a macro.

To specify options where the
argument immediately follows the
option, use an isPrefix attribute
for opt and set it to true.

-U

<semantic_options><opt> ...

</opt></semantic_options>

The options that you use to modify
the compiler behavior. These
options specify the language
settings to which the code must
conform.

You can use the isPrefix
attribute to specify multiple
options that have the same prefix
and the numArgs attribute to
specify options with multiple
arguments. For instance:

• Instead of

<opt>-m32</opt>
<opt>-m64</opt>

You can write <opt
isPrefix="true">-m</
opt>.

• Instead of

<opt>-std=c90</opt>
<opt>-std=c99</opt>

You can write <opt
numArgs="1">-std</opt>. If
your makefile uses -std c90
instead of -std=c90, this
notation also supports that
usage.

• -ansi
• -std =C90
• -std =c++11
• -fun signed

-char

 Compiler Not Supported for Project Creation from Build Systems

11-9

XML Element Content Description Content Example
for GNU C
Compiler

<compiler> ... </compiler> The Polyspace compiler option
that corresponds to or closely
matches your compiler. The
content of this element directly
translates to the option Compiler
in your Polyspace project or
options file.

For the complete list of compilers
available, see Compiler (-
compiler).

gnu4.7

<preprocess_options_list>

<opt> ... </opt>

</preprocess_options_list>

The options that specify how your
compiler generates a
preprocessed file.

You can use the macro $
(OUTPUT_FILE) if your compiler
does not allow sending the
preprocessed file to the standard
output. Instead it defines the
preprocessed file internally.

-E

For an example of
the $
(OUTPUT_FILE)
macro, see the
existing compiler
configuration file
cl2000.xml.

<preprocessed_output_file> ... </
preprocessed_output_file>

The name of file where the
preprocessed output is stored.

You can use the following macros
when the name of the
preprocessed output file is
adapted from the source file:

• $(SOURCE_FILE): Source file
name

• $(SOURCE_FILE_EXT):
Source file extension

• $(SOURCE_FILE_NO_EXT):
Source file name without
extension

For instance, use $
(SOURCE_FILE_NO_EXT).pre
when the preprocessor file name
has the same name as the source
file, but with extension .pre.

For an example of
this element, see
the existing
compiler
configuration file
xc8.xml.

<src_extensions><ext> ...

</ext></src_extensions>

The file extensions for source files. • c
• cpp
• c++

11 Troubleshooting in Polyspace Bug Finder Server

11-10

XML Element Content Description Content Example
for GNU C
Compiler

<obj_extensions><ext> ...

</ext></obj_extensions>

The file extensions for object files.

<precompiled_header_extensions> ...

</precompiled_header_extensions>

The file extensions for
precompiled headers (if available).

<polyspace_extra_options_list>
 <opt> ... </opt>
 <opt> ... </opt>
</polyspace_extra_options_list>

Additional options that are used
for the subsequent analysis.

For instance, to avoid compilation
errors in the subsequent analysis
due to non-ANSI extension
keywords, enter -D
keyword=value, for example:

<polyspace_extra_options_list>
 <opt>-D MACRO1</opt>
 <opt>-D MACRO2=VALUE</opt>
</polyspace_extra_options_list>

For more information, see
Preprocessor definitions
(-D).

Mapping Between Existing Configuration Files and Compiler Names

Select the configuration file in polyspaceroot\polyspace\configure
\compiler_configuration\ that most closely resembles the configuration of your compiler. Use
the following table to map compilers to their configuration files.

Compiler Name Vendor XML File
ARM® ARM Keil armcc.xml

armclang.xml
Visual C++ Microsoft cl.xml
Clang Not applicable clang.xml
CodeWarrior NXP cw_ppc.xml

cw_s12z.xml
cx6808 Cosmic cx6808.xml
Diab Wind River diab.xml
gcc Not applicable gcc.xml
Green Hills Green Hills Software ghs_arm.xml

ghs_arm64.xml
ghs_i386.xml
ghs_ppc.xml

 Compiler Not Supported for Project Creation from Build Systems

11-11

Compiler Name Vendor XML File
ghs_rh850.xml
ghs_tricore.xml

IAR Embedded Workbench IAR iar.xml
iar-arm.xml
iar-avr.xml
iar-msp430.xml
iar-rh850.xml
iar-rl78.xml

Renesas Renesas renesas-rh850.xml
renesas-rl78.xml
renesas-rx.xml

TASKING® Altium tasking.xml
tasking-166.xml
tasking-850.xml
tasking-arm.xml

Tiny C Not applicable tcc.xml
TM320 and its derivatives Texas Instruments ti_arm.xml

ti_c28x.xml
ti_c6000.xml
ti_msp430.xml

xc8 (PIC) Microchip xc8.xml

11 Troubleshooting in Polyspace Bug Finder Server

11-12

Slow Build Process When Polyspace Traces the Build

Issue
In some cases, your build process can run slower when Polyspace traces the build.

Cause
Polyspace caches information in files stored in the system temporary folder, such as C:\Users
\User_Name\AppData\Local\Temp, in Windows. Your build can take a long time to perform read/
write operations to this folder. Therefore, the overall build process is slow.

Solution
You can work around the slow build process by changing the location where Polyspace stores cache
information. For instance, you can use a cache path local to the drive from which you run build
tracing. To create and use a local folder ps_cache for storing cache information, use the advanced
option -cache-path ./ps_cache.

• If you trace your build from the Polyspace user interface, enter this flag in the field Add
advanced configure options.

• If you trace your build from the DOS/ UNIX or MATLAB command line, use this flag with the
polyspace-configure command.

For more information, see polyspace-configure.

 Slow Build Process When Polyspace Traces the Build

11-13

Check if Polyspace Supports Build Scripts

Issue
This topic is relevant only if you are creating a Polyspace project in Windows from your build scripts.

When Polyspace traces your build script in a Windows console application other than cmd.exe, the
command fails. However, the build command by itself executes to completion.

For instance, your build script executes to completion from the Cygwin shell. However, when
Polyspace traces the build, the build script throws an error.

Possible Cause
When you launch a Windows console application, your environment variables are appropriately set.
Alternate console applications such as the Cygwin shell can set your environment differently from
cmd.exe.

Polyspace attempts to trace your build script with the assumption that the script runs to completion
in cmd.exe. Therefore, even if your script runs to completion in the alternate console application,
when Polyspace traces the build, the script can fail.

Solution
Make sure that your build script executes to completion in the cmd.exe interface. If the build
executes successfully, create a wrapper .bat file around your script and trace this file.

For instance, before you trace a build command that executes to completion in the Cygwin shell, do
one of the following:

• Launch the Cygwin shell from cmd.exe and then run your build script. For instance, if you use a
script build.sh to build your code, enter the following command at the DOS command line:

cmd.exe /C "C:\cygwin64\bin\bash.exe" -c build.sh
• Find the full path to your build script and then run this script from cmd.exe.

For instance, enter the following command at the DOS command line:

cmd.exe /C path_to_script

path_to_script is the full path to your build script. For instance, C:\my_scripts\build.sh.

If the steps do not execute to completion, Polyspace cannot trace your build.

If the steps complete successfully, trace the build command after launching it from cmd.exe. For
instance, on the command-line, do the following to create a Polyspace options file.

1 Enter your build commands in a .bat file.

rem @echo off
cmd.exe /C "C:\cygwin64\bin\bash.exe" -c build.sh

Name the file, for instance, launching.bat.

11 Troubleshooting in Polyspace Bug Finder Server

11-14

2 Trace the build commands in the .bat file and create a Polyspace options file.

"C:\Program Files\MATLAB\R2017b\polyspace\bin\polyspace-configure.exe"
 -output-options-file myOptions.txt launching.bat

You can now run polyspace-bug-finder-server on the options file.

 Check if Polyspace Supports Build Scripts

11-15

Troubleshooting Project Creation from MinGW Build

Issue
You create a project from a MinGW build, but get an error when running an analysis on the project.
The error message comes from using one of these keywords: __declspec, __cdecl, __fastcall,
__thiscall or __stdcall.

Cause
When you create a project from a MinGW build, the project uses a GNU compiler. Polyspace does not
recognize these keywords for the GNU compilers.

Solution
Replace these keywords with equivalent keywords just for the purposes of analysis.

Before analysis, for the option Preprocessor definitions (-D), enter:

• __declspec(x)=__attribute__((x))
• __cdecl=__attribute__((__cdecl__))
• __fastcall=__attribute__((__fastcall__))
• __thiscall=__attribute__((__thiscall__))
• __stdcall=__attribute__((__stdcall__))

If you are running Polyspace on the command line in a UNIX shell, add double quotes around the -D
option. For instance, use:

"-D __cdecl=__attribute__((__cdecl__))"

11 Troubleshooting in Polyspace Bug Finder Server

11-16

Troubleshooting Project Creation from Visual Studio Build
You can run polyspace-configure on a Visual Studio build and extract information from the build
to create a Polyspace project or options file.

You can trace your Visual Studio build in one of the following ways:

• Build your Visual Studio project completely at the command line with msbuild while tracing this
build with polyspace-configure.

In this workflow, you run polyspace-configure on an msbuild command with a Visual Studio
project (.vcxproj) file. For instance, in a Visual Studio 2019 developer prompt, enter the
following:

polyspace-configure msbuild TestProject.vcxproj /t:Rebuild
• Build your Visual Studio project in the Visual Studio IDE while tracing this build with polyspace-

configure.

Run polyspace-configure on the devenv.exe executable to open the Visual Studio IDE, build
your project or solution within the IDE, and then close the IDE.

If running polyspace-configure on the msbuild command does not work properly, do the
following:

1 Stop the msbuild process.
2 Set the environment variable MSBUILDDISABLENODEREUSE to 1.
3 Restart polyspace-configure on msbuild, this time using the /nodereuse:false option.

For instance:

polyspace-configure msbuild TestProject.vcxproj /t:Rebuild /nodereuse:false

See Also
polyspace-configure

 Troubleshooting Project Creation from Visual Studio Build

11-17

Polyspace Cannot Find the Server

Message
Error: Cannot instantiate Polyspace cluster
| Check the -scheduler option validity or your default cluster profile
| Could not contact an MJS lookup service using the host computer_name.
 The hostname, computer_name, could not be resolved.

Possible Cause
Polyspace uses information provided in the preferences of a Polyspace desktop product to locate the
server. If this information is incorrect, the software cannot locate the server.

Solution
Open the user interface of the Polyspace desktop product. Check if the server information provided is
correct.

1 Select Tools > Preferences.
2 Select the Server Configuration tab. Check your server information.

For instance, the entry in Job scheduler host name must match the host name of the computer
that forms the head node of the MATLAB Parallel Server cluster. For more information, see
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”.

11 Troubleshooting in Polyspace Bug Finder Server

11-18

Job Manager Cannot Write to Database

Message
Unable to write data to the job manager database

Possible Cause
If the computer that forms the head node of the MATLAB Parallel Server cluster cannot send data to
the client computer, you see this error. The most likely reasons for the remote computer being unable
to connect to the client computer are:

• Firewalls do not allow traffic from the MATLAB Job Scheduler to the client.
• The MATLAB Job Scheduler cannot resolve the short hostname of the client computer.

Workaround
Add localhost IP to configuration.

1 In the user interface of the Polyspace desktop products, select Tools > Preferences.
2 On the Server Configuration tab, in the Localhost IP address field, enter the IP address of

your local computer.

To retrieve your IP address:

• Windows

1 Open Control Panel > Network and Sharing Center.
2 Select your active network.
3 In the Status window, click Details. Your IP address is listed under IPv4 address.

• Linux — Run the ifconfig command and find the inet addr corresponding to your network
connection.

• Mac — Open System Preferences > Network.

See Also

Related Examples
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
• “Connection Problems Between the Client and MATLAB Job Scheduler” (Parallel Computing

Toolbox)

 Job Manager Cannot Write to Database

11-19

Undefined Identifier Error

Issue
Polyspace verification fails during the compilation phase with a message about undefined identifiers.

The message indicates that Polyspace cannot find a variable definition. Therefore, it cannot identify
the variable type.

Possible Cause: Missing Files
The source code you provided does not contain the variable definition. For instance, the variable is
defined in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your Polyspace project,
you see a previous warning:

Warning: could not find include file "my_include.h"

Solution

If the variable definition occurs in an include file, add the folder that contains the include file.

• In the user interface of the Polyspace desktop products, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface” (Polyspace
Bug Finder).

• At the command line, use the flag -I with the polyspace-bug-finder-server command.

For more information, see -I.

Possible Cause: Unrecognized Keyword
The variable represents a keyword that your compiler recognizes but is not part of the ANSI C
standard. Therefore, Polyspace does not recognize it.

For instance, some compilers interpret __SP as a reference to the stack pointer.

Solution

If the variable represents a keyword that Polyspace does not recognize, replace or remove the
keyword from your source code or preprocessed code.

If you remove or replace the keyword from the preprocessed code, you can avoid the compilation
error while keeping your source code intact. You can do one of the following:

• Replace or remove each individual unknown keyword using an analysis option. Replace the
compiler-specific keyword with an equivalent keyword from the ANSI C Standard.

For information on the analysis option, see Preprocessor definitions (-D).
• Declare the unknown keywords in a separate header file using #define directives. Specify that

header file using an analysis option.

11 Troubleshooting in Polyspace Bug Finder Server

11-20

For information on the analysis option, see Include (-include). For a sample header file, see
“Gather Compilation Options Efficiently” on page 5-28.

Possible Cause: Declaration Embedded in #ifdef Statements
The variable is declared in a branch of an #ifdef macro_name preprocessor directive. For instance,
the declaration of a variable max_power occurs as follows:

#ifdef _WIN32
 #define max_power 31
#endif

Your compilation toolchain might consider the macro macro_name as implicitly defined and execute
the #ifdef branch. However, the Polyspace compilation might not consider the macro as defined.
Therefore, the #ifdef branch is not executed and the variable max_power is not declared.

Solution

To work around the compilation error, do one of the following:

• Use Target & Compiler options to directly specify your compiler. For instance, to emulate a
Visual C++ compiler, set the Compiler to visual12.0. See “Target and Compiler”.

• Define the macro explicitly using the option Preprocessor definitions (-D).

Note If you create a Polyspace by tracing your build commands, most Target & Compiler options
are automatically set.

Possible Cause: Project Created from Non-Debug Build
This can be a possible cause only if the undefined identifier occurs in an assert statement (or an
equivalent Visual C++ macro such as ASSERT or VERIFY).

Typically, you come across this error in the following way. You create a Polyspace project from a build
system in non-debug mode. When you run an analysis on the project, you face a compilation error
from an undefined identifier in an assert statement. You find that the identifier my_identifier is
defined in a #ifndef NDEBUG statement, for instance as follows:

#ifndef NDEBUG
int my_identifier;
#endif

The C standard states that when the NDEBUG macro is defined, all assert statements must be
disabled.

Most IDEs define the NDEBUG macro in their build systems. When you build your source code in your
IDE in non-debug mode, code in a #ifndef NDEBUG statement is removed during preprocessing. For
instance, in the preceding example, my_identifier is not defined. If my_identifier occurs only
in assert statements, it is not used either, because NDEBUG disables assert statements. You do not
have compilation errors from undefined identifiers and your build system executes successfully.

Polyspace does not disable assert statements even if NDEBUG macro is defined because the software
uses assert statements internally to enhance verification.

 Undefined Identifier Error

11-21

When you create a Polyspace project from your build system, if your build system defines the NDEBUG
macro, it is also defined for your Polyspace project. Polyspace removes code in a #ifndef NDEBUG
statement during preprocessing, but does not disable assert statements. If assert statements in
your code rely on the code in a #ifndef NDEBUG statement, compilation errors can occur.

In the preceding example:

• The definition of my_identifier is removed during preprocessing.
• assert statements are not disabled. When my_identifier is used in an assert statement, you

get an error because of undefined identifier my_identifier.

Solution

To work around this issue, create a Polyspace project from your build system in debug mode. When
you execute your build system in debug mode, NDEBUG is not defined. When you create a Polyspace
project from this build, NDEBUG is not defined for your Polyspace project.

Depending on your project settings, use the option that enables building in debug mode. For instance,
if your build system is gcc-based, you can define the DEBUG macro and undefine NDEBUG:

gcc -DDEBUG=1 -UNDEBUG *.c

Alternatively, you can disable the assert statements in your preprocessed code using the option
Preprocessor definitions (-D). However, Polyspace will not be able to emulate the assert
statements.

11 Troubleshooting in Polyspace Bug Finder Server

11-22

Unknown Function Prototype Error

Issue
During the compilation phase, the software displays a warning or error message about unknown
function prototype.

the prototype for function 'myfunc' is unknown

The message indicates that Polyspace cannot find a function prototype. Therefore, it cannot identify
the data types of the function argument and return value, and has to infer them from the calls to the
function.

To determine the data types for such functions, Polyspace follows the C99 Standard (ISO/IEC
9899:1999, Chapter 6.5.2.2: Function calls).

• The return type is assumed to be int.
• The number and type of arguments are determined by the first call to the function. For instance, if

the function takes one double argument in the first call, for subsequent calls, the software
assumes that it takes one double argument. If you pass an int argument in a subsequent call, a
conversion from int to double takes place.

During the linking phase, if a mismatch occurs between the number or type of arguments or the
return type in different compilation units, the analysis follows an internal algorithm to resolve this
mismatch and determine a common prototype.

Cause
The source code you provided does not contain the function prototype. For instance, the function is
declared in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your Polyspace project,
you see a previous warning:

Warning: could not find include file "my_include.h"

Solution
Search for the function declaration in your source repository.

If you find the function declaration in an include file, add the folder that contains the include file.

• In the user interface of the Polyspace desktop products, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface” (Polyspace
Bug Finder).

• At the command line, use the flag -I with the polyspace-bug-finder-server command.

For more information, see -I.

 Unknown Function Prototype Error

11-23

Error Related to #error Directive

Issue
The analysis stops with a message containing a #error directive. For instance, the following
message appears: #error directive: !Unsupported platform; stopping!.

Cause
You typically use the #error directive in your code to trigger a fatal error in case certain macros are
not defined. Your compiler implicitly defines the macros, therefore the error is not triggered when
you compile your code. However, the default Polyspace compilation does not consider the macros as
defined, therefore, the error occurs.

For instance, in the following example, the #error directive is reached only if the macros
__BORLANDC__, __VISUALC32__ or __GNUC__ are not defined. If you use a GNU C compiler, for
instance, the compiler considers the macro __GNUC__ as defined and the error does not occur.
However, if you use the default Polyspace compilation, it does not consider the macros as defined.

#if defined(__BORLANDC__) || defined(__VISUALC32__)
#define MYINT int
#elif defined(__GNUC__)
#define MYINT long
#else
#error !Unsupported platform; stopping!
#endif

Solution
For successful compilation, do one of the following:

• Specify a compiler such as visual12.0 or gnu4.9. Specifying a compiler defines some of the
compilation flags for the analysis.

For more information, see Compiler (-compiler).
• If the available compiler options do not match your compiler, explicitly define one of the

compilation flags __BORLANDC__, __VISUALC32__, or __GNUC__.

For more information, see Preprocessor definitions (-D).

11 Troubleshooting in Polyspace Bug Finder Server

11-24

Large Object Error

Issue
The analysis stops during compilation with a message indicating that an object is too large.

Cause
The error happens when the software detects an object such as an array, union, structure, or class,
that is too big for the pointer size of the selected target.

For instance, you get the message, Limitation: struct or union is too large in the
following example. You specify a pointer size of 16 bits. The maximum object size allocated to a
pointer, and therefore the maximum allowed size for an object, can be 216-1 bytes. However, you
declare a structure as follows:

• struct S
{
 char tab[65536];
}s;

• struct S
{
 char tab[65534];
 int val;
}s;

Solution
1 Check the pointer size that you specified through your target processor type. For more

information, see Target processor type (-target).

For instance, in the following, the pointer size for a custom target My_target is 16 bits.

 Large Object Error

11-25

2 Change your code or specify a different pointer size.

For instance, you can:

• Declare an array of smaller size in the structure.

If you are using a predefined target processor type, the pointer size is likely to be the same as
the pointer size on your target architecture. Therefore, your declaration might cause errors
on your target architecture.

• Change the pointer size of the target processor type that you specified, if possible.

Otherwise, specify another target processor type with larger pointer size or define your own
target processor type. For more information on defining your own processor type, see
Generic target options.

Note Polyspace imposes an internal limit of 128 MB on the size of data structures. Even if
your target processor type specification allows data structures of larger size, this internal
limit constrains the data structure sizes.

11 Troubleshooting in Polyspace Bug Finder Server

11-26

Errors Related to Generic Compiler
If you use a generic compiler, you can encounter this issue. For more information, see Compiler (-
compiler).

Issue
The analysis stops with an error message related to a non-ANSI C keyword, for instance, data or
attributes such as __attribute__((weak)).

Depending on the location of the keyword, the error message can vary. For instance, this line causes
the error message: expected a ";".

data int tab[10];

Cause
The generic Polyspace compiler supports only ANSI C keywords. If you use a language extension, the
generic compiler does not recognize it and treats the keyword as a regular identifier.

Solution
Specify your compiler by using the option Compiler (-compiler).

If your compiler is not directly supported or is not based on a supported compiler, you can use the
generic compiler. To work around the compilation errors:

• If the keyword is related to memory modelling, remove it from the preprocessed code. For
instance, to remove the data keyword, enter data= for the option Preprocessor definitions
(-D).

• If the keyword is related to an attribute, remove attributes from the preprocessed code. Enter
__attribute__(x)= for the option Preprocessor definitions (-D).

If your code has this line:

void __attribute__ ((weak)) func(void);

And you remove attributes, the analysis reads the line as:

void func(void);

When you use these workarounds, your source code is not altered.

 Errors Related to Generic Compiler

11-27

Errors Related to Keil or IAR Compiler
If you use the compiler, Keil or IAR, you can encounter this issue. For more information, see
Compiler (-compiler).

Missing Identifiers
Issue

The analysis stops with the error message, expected an identifier, as if an identifier is missing.
However, in your source code, you can see the identifier.

Cause

If you select Keil or IAR as your compiler, the software removes certain keywords during
preprocessing. If you use these keywords as identifiers such as variable names, a compilation error
occurs.

For a list of keywords that are removed, see “Supported Keil or IAR Language Extensions” on page 5-
23.

Solution

Specify that Polyspace must not remove the keywords during preprocessing. Define the macros
__PST_KEIL_NO_KEYWORDS__ or __PST_IAR_NO_KEYWORDS__.

For more information, see Preprocessor definitions (-D).

11 Troubleshooting in Polyspace Bug Finder Server

11-28

Errors Related to Diab Compiler
If you choose diab for the option Compiler (-compiler), you can encounter this issue.

Issue
During Polyspace analysis, you see an error related to a keyword specific to the Diab compiler. For
instance, you see an error related to the restrict keyword.

Cause
You typically use a compiler flag to enable the keyword. The Polyspace analysis does not enable these
keywords by default. You have to make Polyspace aware of your compiler flags.

The Polyspace analysis does not enable these keywords by default to prevent compilation errors.
Another user might not enable the keyword and instead use the keyword name as a regular identifier.
If Polyspace treats the identifier as a keyword, a compilation error will occur.

Solution
Use the command-line option -compiler-parameter in your Polyspace analysis as follows. You use
this command-line option to make Polyspace aware of your compiler flags. In the user interface of the
Polyspace desktop products, you can enter the command-line option in the field Other (Polyspace
Bug Finder). You can enter the option multiple times.

The argument of -compiler-parameter depends on the keyword that causes the error. Once you
enable the keyword, do not use the keyword name as a regular identifier. For instance, once you
enable the keyword pixel, do not use pixel as a variable name. The statement int pixel = 1
causes a compilation error.

• restrict keyword:

You typically use the compiler flag -Xlibc-new or -Xc-new. For your Polyspace analysis, use

-compiler-parameter -Xc-new

The following code will not compile with Polyspace unless you specify the compiler flag.

int sscanf(const char *restrict, const char *restrict, ...);
• PowerPC AltiVec vector extensions such as the vector type qualifier:

You typically use the compiler flag -tPPCALLAV:. For your Polyspace analysis, use

-compiler-parameter -tPPCALLAV:

The following code will not compile with Polyspace unless you specify the compiler flag.

vector unsigned char vbyte;
vector bool vbool;
vector pixel vpx;

int main(int argc, char** argv)
{

 Errors Related to Diab Compiler

11-29

 return 0;
}

• Extended keywords such as pascal, inline, packed, interrupt, extended, __X, __Y,
vector, pixel, bool and others:

You typically use the compiler flag -Xkeywords=. For your Polyspace analysis, use

-compiler-parameter -Xkeywords=0xFFFFFFFF

The following code will not compile with Polyspace unless you specify the compiler flag.

packed(4) struct s2_t {
 char b;
 int i;
} s2;

packed(4,2) struct s3_t {
 char b;
} s3;

int pascal foo = 4;

int main(int argc, char** argv) {
 foo++;
 return 0;
}

11 Troubleshooting in Polyspace Bug Finder Server

11-30

Errors Related to Green Hills Compiler
If you choose greenhills for the option Compiler (-compiler), you encounter this issue.

Issue
During Polyspace analysis, you see an error related to vector data types specific to Green Hills target
rh850. For instance, you see an error related to identifier __ev64_u16__.

Cause
When compiling code using the Green Hills compiler with target rh850, to enable single instruction
multiple data (SIMD) vector instructions, you specify two flags:

• -rh850_simd: You enable intrinsic functions that support SIMD vector instructions. The functions
are defined in your compiler header files. These data types are available:

• __ev64_u16__
• __ev64_s16__
• __ev64_u32__
• __ev64_s32__
• __ev64_u64__
• __ev64_s64__
• __ev64_opaque__
• __ev128_opaque__

• -rh850_fpsimd: You enable intrinsic functions that support floating-point SIMD vector
instructions. The functions are defined in your compiler header files. These data types are
available:

• __ev128_f32__
• __ev256_f32__

The Polyspace analysis does not enable SIMD support by default. You must identify your compiler
flags to Polyspace.

Solution
In your Polyspace analysis, use the command-line option -compiler-parameter. In the user
interface, you can enter the command-line option in the Other (Polyspace Bug Finder) field, under
the Advanced Settings in the Configuration pane.

• -rh850_simd: For your Polyspace analysis, use

-compiler-parameter -rh850_simd
• -rh850_fpsimd: For your Polyspace analysis, use

-compiler-parameter -rh850_fpsimd

Note

 Errors Related to Green Hills Compiler

11-31

• __ev128_opaque__ is 16 bytes aligned in Polyspace.
• __ev256_f32__ is 32 bytes aligned in Polyspace.

11 Troubleshooting in Polyspace Bug Finder Server

11-32

Errors Related to TASKING Compiler
If you choose tasking for the option Compiler (-compiler), you can encounter this issue.

Issue
During Polyspace analysis, you see an error related to a Special Function Register data type.

Cause
When compiling with the TASKING compiler, you typically use the following compiler flags to specify
where Special Function Register (SFR) data types are declared:

• --cpu=xxx: The compiler implicitly #includes the file sfr/regxxx.sfr in your source files.
Once #include-ed, you can use Special Function Registers (SFR-s) declared in that .sfr file.

• --alternative-sfr-file: The compiler uses an alternative SFR file instead of the regular SFR
file. You can use Special Function Registers (SFR-s) declared in that alternative SFR file.

If you specify the TASKING compiler for your Polyspace analysis, the analysis makes the following
assumptions about these compiler flags:

• --cpu=xxx: The analysis chooses a specific value of xxx. If you use a different value with your
TASKING compiler, you can encounter an error during Polyspace analysis.

The xxx value that the Polyspace analysis uses depends on your choice of Target processor
type (-target):

• tricore: tc1793b
• c166: xc167ci
• rh850: r7f701603
• arm: ARMv7M

• --alternative-sfr-file: The analysis assumes that you do not use an alternative SFR file. If
you use one, you can encounter an error.

Solution
Use the command-line option -compiler-parameter in your Polyspace analysis as follows. You use
this command-line option to make Polyspace aware of your compiler flags. In the user interface, you
can enter the command-line option in the field Other (Polyspace Bug Finder). You can enter the
option multiple times.

• --cpu=xxx: For your Polyspace analysis, use

-compiler-parameter --cpu=xxx

Here, xxx is the value that you use when compiling with your compiler.
• --alternative-sfr-file: For your Polyspace analysis, use

-compiler-parameter --alternative-sfr-file

 Errors Related to TASKING Compiler

11-33

If you still encounter an error because Polyspace is not able to locate your .asfr file, explicitly
#include your .asfr file in the preprocessed code using the option Include (-include).

Typically, the path to the file is Tasking_C166_INSTALL_DIR\include\sfr
\regCPUNAME.asfr. For instance, if your TASKING compiler is installed in C:\Program Files
\Tasking\C166-VX_v4.0r1\ and you use the CPU-related flag -Cxc2287m_104f or --
cpu=xc2287m_104f, the path is C:\Program Files\Tasking\C166-VX_v4.0r1\include
\sfr\regxc2287m.asfr.

You can also encounter the same issue with alternative sfr files when you trace your build
command. For more information, see “Requirements for Project Creation from Build Systems” on
page 5-20.

11 Troubleshooting in Polyspace Bug Finder Server

11-34

Errors from Conflicts with Polyspace Header Files

Issue
You see compilation errors from header files included by Polyspace.

For instance, the error message refers to one of the subfolders of polyspaceroot\polyspace
\verifier\cxx\include.

Typically, the error message is related to a standard library function.

Cause
If your compiler defines a standard library function or another construct and you do not provide the
path to your compiler header files, Polyspace uses its own implementation of the function.

If your compiler definitions differ from the corresponding Polyspace definitions, the verification stops
with an error.

Solution
Specify the folder containing your compiler header files.

• In the user interface, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface” (Polyspace
Bug Finder).

• At the command line, use the flag -I with the polyspace-bug-finder-server command.

For more information, see -I.

For compilation with GNU C on UNIX-based platforms, use /usr/include. On embedded compilers,
the header files are typically in a subfolder of the compiler installation folder. Examples of include
folders are given for some compilers.

• Wind River Diab: For instance, /apps/WindRiver/Diab/5.9.4/diab/5.9.4.8/include/.
• IAR Embedded Workbench: For instance, C:\Program Files\IAR Systems\Embedded

Workbench 7.5\arm\inc.
• Microsoft Visual Studio: For instance, C:\Program Files\Microsoft Visual Studio

14.0\VC\include.

Consult your compiler documentation for the path to your compiler header files. Alternatively, see
“Provide Standard Library Headers for Polyspace Analysis” on page 5-19.

 Errors from Conflicts with Polyspace Header Files

11-35

Errors from Using Namespace std Without Prefix

Issue
The Polyspace analysis stops with an error message such as:

error: the global scope has no "modfl"

The line highlighted in the error uses a function from the standard library without the std:: prefix.

Cause
Some compilers allow using members of the standard library namespace without explicitly specifying
the std:: prefix. For such compilers, your code can contain lines like this:

using ::mblen;

where mblen is a member of the C++ standard library. Polyspace compilation considers the members
as part of the global namespace and shows an error.

Solution
It is a good practice to qualify members of the standard library with the std:: prefix. For instance,
to use the mblen function in the preceding example, rewrite the line as:

using std::mblen;

To continue to retain the current code and work around the Polyspace error, use the analysis option -
using-std. If you are running the analysis in the Polyspace user interface, enter the option in the
Other field. See Other.

11 Troubleshooting in Polyspace Bug Finder Server

11-36

Errors from Assertion or Memory Allocation Functions

Issue
Polyspace uses its own implementation of standard library functions for more efficient analysis. If you
redefine a standard library function and provide the function body to Polyspace, the analysis uses
your definition.

However, for certain standard library functions, Polyspace continues to use its own implementations,
even if you redefine the function and provide the function body. The functions include assert and
memory allocation functions such as malloc, calloc and alloca.

You see a warning message like the following:

Body of routine "malloc" was discarded.

Cause
These functions have special meaning for the Polyspace analysis, so you are not allowed to redefine
them. For instance:

• The Polyspace implementation of the malloc function allows the software to check if memory
allocated using malloc is freed later.

• The Polyspace implementation of assert is used internally to enhance analysis.

Solution
Unless you particularly want your own redefinitions to be used, ignore the warning. The analysis
results are based on Polyspace implementations of the standard library function, which follow the
original function specifications.

If you want your own redefinitions to be used and you are sure that your redefined function behaves
the same as the original function, rename the functions. You can rename the function only for the
purposes of analysis using the option Preprocessor definitions (-D). For instance, to rename
a function malloc to my_malloc, use malloc=my_malloc for the option argument.

 Errors from Assertion or Memory Allocation Functions

11-37

Errors from In-Class Initialization (C++)
When a data member of a class is declared static in the class definition, it is a static member of the
class. You must initialize static data members outside the class because they exist even when no
instance of the class has been created.

class Test
{
public:

 static int m_number = 0;
};

Error message:
Error: a member with an in-class initializer must be const

Corrected code:

in file Test.h in file Test.cpp
class Test
{
public:
static int m_number;
};

int Test::m_number = 0;

11 Troubleshooting in Polyspace Bug Finder Server

11-38

Errors from Double Declarations of Standard Template Library
Functions (C++)

Consider the following code.

#include <list>

void f(const std::list<int*>::const_iterator it) {}
void f(const std::list<int*>::iterator it) {}
void g(const std::list<int*>::const_reverse_iterator it) {}
void g(const std::list<int*>::reverse_iterator it) {}

The declared functions belong to list container classes with different iterators. However, the
software generates the following compilation errors:

error: function "f" has already been defined
error: function "g" has already been defined

You would also see the same error if, instead of list, the specified container was vector, set, map,
or deque.

To avoid the double declaration errors, do one of the following:

• Deactivate automatic stubbing of standard template library functions. For more information, see
No STL stubs (-no-stl-stubs).

• Define the following Polyspace preprocessing directives:

• __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_VECTOR_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_SET_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_MAP_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_DEQUE_CONST_ITERATOR_DIFFER_ITERATOR__

For example, for the given code, run analysis at the command line with the following flag. The flag
defines the appropriate directive for the list container.

-D __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__

For more information on defining preprocessor directives, see Preprocessor definitions (-
D).

 Errors from Double Declarations of Standard Template Library Functions (C++)

11-39

Errors Related to GNU Compiler
If you choose gnu for the option Compiler (-compiler), you can encounter this issue.

Issue
The Polyspace analysis stops with a compilation error.

Cause
You are using certain advanced compiler-specific extensions that Polyspace does not support. See
“Limitations”.

Solution
For easier portability of your code, avoid using the extensions.

If you want to use the extensions and still analyze your code, wrap the unsupported extensions in a
preprocessor directive. For instance:

#ifdef POLYSPACE
 // Supported syntax
#else
 // Unsupported syntax
#endif

For regular compilation, do not define the macro POLYSPACE. For Polyspace analysis, enter
POLYSPACE for the option Preprocessor definitions (-D).

If the compilation error is related to assembly language code, use the option -asm-begin -asm-
end.

11 Troubleshooting in Polyspace Bug Finder Server

11-40

Errors Related to Visual Compilers
The following messages appear if the compiler is based on a Visual compiler. For more information,
see Compiler (-compiler).

Import Folder
When a Visual application uses #import directives, the Visual C++ compiler generates a header file
with extension .tlh that contains some definitions. To avoid compilation errors during Polyspace
analysis, you must specify the folder containing those files.

Original code:

#include "stdafx.h"
#include <comdef.h>
#import <MsXml.tlb>
MSXML::_xml_error e ;
MSXML::DOMDocument* doc ;
int _tmain(int argc, _TCHAR* argv[])
{
 return 0;
}

Error message:

"../sources/ImportDir.cpp", line 7: catastrophic error: could not
open source file "./MsXml.tlh"
 #import <MsXml.tlb>

The Visual C++ compiler generates these files in its “build-in” folder (usually Debug or Release). In
order to provide those files:

• Build your Visual C++ application.
• Specify your build folder for the Polyspace analysis.

pragma Pack
Using a different value with the compile flag (#pragma pack) can lead to a linking error message.

Original code:

test1.cpp type.h test2.cpp
#pragma pack(4)

#include "type.h"

struct A
{
 char c ;
 int i ;
} ;

#pragma pack(2)

#include "type.h"

Error message:
Pre-linking C++ sources ...
"../sources/type.h", line 2: error: declaration of class "A" had
a different meaning during compilation of "test1.cpp"
(class types do not match)
 struct A

 Errors Related to Visual Compilers

11-41

 ^
 detected during compilation of secondary translation unit
"test2.cpp"

To continue the analysis, use the option Ignore pragma pack directives (-ignore-pragma-
pack).

C++/CLI
Polyspace does not support Microsoft C++/CLI, a set of language extensions for .NET programming.

You can get errors such as:

error: name must be a namespace name
| using namespace System;

Or:

error: expected a declaration
| public ref class Form1 : public System::Windows::Forms::Form

11 Troubleshooting in Polyspace Bug Finder Server

11-42

Error or Slow Runs from Disk Defragmentation and Anti-virus
Software

Issue
In some cases, anti-virus software checks can noticeably slow down a Polyspace analysis. This
reduction occurs because the software checks the temporary files produced by the Polyspace
analysis.

You see noticeably slow analysis for a simple project or the analysis stops with an error message like
the following:
Some stats on aliases use:
 Number of alias writes: 22968
 Number of must-alias writes: 3090
 Number of alias reads: 0
 Number of invisibles: 949
Stats about alias writes:
 biggest sets of alias writes: foo1:a (733), foo2:x (728), foo1:b (728)
 procedures that write the biggest sets of aliases: foo1 (2679), foo2 (2266),
 foo3 (1288)
**** C to intermediate language translation - 17 (P_PT) took 44real, 44u + 0s (1.4gc)
exception SysErr(OS.SysErr(name="Directory not empty", syserror=notempty)) raised.
unhandled exception: SysErr: No such file or directory [noent]

--
--- ---
--- Verifier has encountered an internal error. ---
--- Please contact your technical support. ---
--- ---

Possible Cause
A disk defragmentation tool or anti-virus software is running on your machine.

After starting an analysis, check the processes running and see if an anti-virus process is causing
large amount of CPU usage (and possibly memory usage).

Solution
Try:

• Stopping the disk defragmentation tool.
• Deactivating the anti-virus software. Or, configuring exception rules for the anti-virus software to

allow Polyspace to run without a failure.

For instance, you can try the following:

• Configure the anti-virus software to whitelist the Polyspace executables.

For instance, in Windows, with the anti-virus software Windows Defender, you can add an
exclusion for the Polyspace installation folder C:\Program Files\Polyspace\R2019a, in
particular, the .exe files in the subfolder polyspace\bin and the .exe files starting with
ps_ in the subfolder bin\win64.

 Error or Slow Runs from Disk Defragmentation and Anti-virus Software

11-43

• Configure the anti-virus software to exclude your temporary folder, for example, C:\Temp,
from the checking process.

11 Troubleshooting in Polyspace Bug Finder Server

11-44

SQLite I/O Error

Issue
When you try to run Polyspace, you get this error message:

Cause
Polyspace uses an SQLite database for storing results. This error can appear when SQLite databases
are saved on NFS (Network File System) folders.

Solution
Check the folder where you save Polyspace results. For instance, if you run Polyspace at the
command line, check the option -results-dir.

If the folder is an NFS folder, use a local folder instead.

 SQLite I/O Error

11-45

Resolve -xml-annotations-description Errors
Issue
When you use the option -xml-annotations-description to apply custom annotations to your
Polyspace results, some custom annotations are not applied and you see warnings in the console
output or the desktop interface Output Summary.

Possible Solutions
Custom Annotation Not Found in Mapping

If you define a custom annotation syntax but you do not map it to the Polyspace annotation syntax,
Polyspace detects the custom annotation but does not apply it to the analysis results. You see a
warning similar to this warning in the console output or the Polyspace desktop interface Output
Summary.
Verifying sources ...
Verifying zero_div.c (1/1)
Warning: rule :50 from exampleCustomAnnotation not found in the mapping (XML file).
 Skipping the annotation

Solution

Check the <Mapping/> section of the XML file that you pass to the -xml-annotations-
description option. If the rule listed in the warning is not mapped to a Polyspace rule, add the
appropriate entry to map the rule. For instance, to map rule 50 from the preceding warning to
Polyspace coding rule MISRA C: 2012 Rule 8.4, add this entry in the <Mapping/> section:
<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>

Polyspace Annotations Do Not Apply to Current Code

If you define a custom annotation syntax and you map it to the Polyspace annotation syntax,
Polyspace might not apply some custom annotations to your source code. You see a warning similar to
this warning in the console output or the Polyspace desktop interface Output Summary.
Warning: These Polyspace annotations do not apply to the current code:
| In file D:\Polyspace\Examples\zero_div.c line 7, annotation MISRA-C3:8.4 with text
"Justified by annotation in source"
| In file D:\Polyspace\Examples\zero_div.c line 20, annotation MISRA-C3:8.4 with text
"Justified by annotation in source"
| Possible reasons:
| - Issue not detected with selected configuration options.
| - Issue is fixed.
| - Annotation syntax is incorrect

Solution

Check for these possible causes:

• The issue that the annotation addresses has been fixed in the source code. Polyspace detects the
custom annotation but ignores it.

• The issue that the annotation addresses was not detected by Polyspace with the analysis options
that you specified. For example, if the custom annotation addresses a MISRA C: 2012 coding
standard violation but Polyspace did not check for violations of this coding standard because
option Check MISRA C:2012 (-misra3) is not specified.

• The issue that the annotation addresses was detected but Polyspace could not match the custom
annotation to a corresponding Polyspace annotation. This indicates a syntax error in the

11 Troubleshooting in Polyspace Bug Finder Server

11-46

<Mapping/> section of the XML file that you pass to the -xml-annotations-description
option.

See Also
-xml-annotations-description

Related Examples
• “Define Custom Annotation Format” (Polyspace Bug Finder)

 Resolve -xml-annotations-description Errors

11-47

	Polyspace Analysis on Server After Code Submission
	Prepare Scripts for Polyspace Analysis
	Options Related to Source Code and Target
	Options Related to Polyspace Analysis

	Options Files for Polyspace Analysis
	What are Options Files
	Specifying Options Files
	Specifying Multiple Options Files

	Offload Polyspace Analysis from Continuous Integration Server to Another Server
	Install Products
	Configure and Start Job Scheduler Services on Head Node and Worker Node
	Offload Analysis from Client Node

	Configure Polyspace Analysis Options in User Interface and Generate Scripts
	Prerequisites
	Generate Scripts from Configuration
	Run Analysis with Generated Scripts

	Sample Scripts for Polyspace Analysis with Jenkins
	Extending Sample Scripts to Your Development Process
	Prerequisites
	Set Up Polyspace Plugin in Jenkins
	Script to Run Bug Finder, Upload Results and Send Common Notification
	Script to Run Bug Finder, Upload Results and Send Personalized Notification

	Sample Jenkins Pipeline Scripts for Polyspace Analysis
	Prerequisites
	Run Polyspace Analysis in Stages in a Pipeline Script

	Run Polyspace Analysis on Generated Code by Using Packaged Options Files
	Generate and Package Polyspace Options Files
	Run Polyspace Analysis by Using the Packaged Options Files

	Analyze Code Generated as Standalone Code in a Distributed Workflow
	Open Model
	Configure Model
	Generate Code Archive
	Generate and Package Polyspace Options File
	Run Polyspace Analysis by Using the Packaged Options Files

	Use Existing Software Development Specifications for Polyspace Analysis
	Create Polyspace Analysis Configuration from Build Command
	polyspace-configure Source Files Selection Syntax
	Modularize Polyspace Analysis by Using Build Command
	Build Source Code
	Create One Polyspace Options File for Full Build
	Create Options File for Specific Binary in Build Command
	Create One Options File Per Binary Created in Build Command

	Offload Polyspace Analysis to Remote Servers from Desktop
	Send Polyspace Analysis from Desktop to Remote Servers
	Client-Server Workflow for Running Analysis
	Prerequisites
	Offload Analysis in Polyspace User Interface

	Send Polyspace Analysis from Desktop to Remote Servers Using Scripts
	Client-Server Workflow for Running Analysis
	Prerequisites
	Run Remote Analysis
	Manage Remote Analysis
	Sample Scripts for Remote Analysis

	Run Polyspace Analysis on Server with MATLAB Scripts
	Integrate Polyspace Server Products with MATLAB
	Integrate Polyspace Server Products with MATLAB
	Check Integration Between MATLAB and Polyspace
	Run Polyspace Server Products with MATLAB Scripts

	Configure Target and Compiler Options
	Specify Target Environment and Compiler Behavior
	Extract Options from Build Command
	Specify Options Explicitly

	C/C++ Language Standard Used in Polyspace Analysis
	Supported Language Standards
	Default Language Standard

	C11 Language Elements Supported in Polyspace
	C++11 Language Elements Supported in Polyspace
	C++14 Language Elements Supported in Polyspace
	C++17 Language Elements Supported in Polyspace
	Provide Standard Library Headers for Polyspace Analysis
	Requirements for Project Creation from Build Systems
	Compiler Requirements
	Build Command Requirements

	Supported Keil or IAR Language Extensions
	Special Function Register Data Type
	Keywords Removed During Preprocessing

	Remove or Replace Keywords Before Compilation
	Remove Unrecognized Keywords
	Remove Unrecognized Function Attributes

	Gather Compilation Options Efficiently

	Configure Inputs and Stubbing Options
	Specify External Constraints
	Create Constraint Template
	Create Constraint Template from Code Prover Analysis Results
	Update Existing Template
	Specify Constraints in Code

	External Constraints for Polyspace Analysis
	Constraint Specification Limitations

	Constrain Global Variable Range
	User Interface (Desktop Products Only)
	Command Line

	Constrain Function Inputs
	User Interface (Desktop Products Only)
	Command Line

	XML File Format for Constraints
	Syntax Description — XML Elements
	Valid Modes and Default Values

	Configure Multitasking Analysis
	Analyze Multitasking Programs in Polyspace
	Configure Analysis
	Review Analysis Results

	Auto-Detection of Thread Creation and Critical Section in Polyspace
	Multitasking Routines that Polyspace Can Detect
	Example of Automatic Thread Detection
	Naming Convention for Automatically Detected Threads
	Limitations of Automatic Thread Detection

	Configuring Polyspace Multitasking Analysis Manually
	Specify Options for Multitasking Analysis
	Adapt Code for Code Prover Multitasking Analysis

	Protections for Shared Variables in Multitasking Code
	Detect Unprotected Access
	Protect Using Critical Sections
	Protect Using Temporally Exclusive Tasks
	Protect Using Priorities
	Protect By Disabling Interrupts

	Define Atomic Operations in Multitasking Code
	Nonatomic Operations
	What Polyspace Considers as Nonatomic
	Define Specific Operations as Atomic

	Define Preemptable Interrupts and Nonpreemptable Tasks
	Emulating Task Priorities
	Examples of Task Priorities
	Further Explorations

	Define Critical Sections with Functions That Take Arguments
	Polyspace Assumption on Functions Defining Critical Sections
	Adapt Polyspace Analysis to Lock and Unlock Functions with Arguments

	Configure Coding Rules Checking and Code Metrics Computation
	Check for Coding Standard Violations
	Configure Coding Rules Checking
	Review Coding Rule Violations
	Generate Reports

	Avoid Violations of MISRA C:2012 Rules 8.x
	Reduce Software Complexity by Using Polyspace Checkers
	Configure Thresholds for Software Complexity Checkers
	Identify and Reduce Software Complexity

	Software Quality Objective Subsets (C:2004)
	Rules in SQO-Subset1
	Rules in SQO-Subset2

	Software Quality Objective Subsets (AC AGC)
	Rules in SQO-Subset1
	Rules in SQO-Subset2

	Software Quality Objective Subsets (C:2012)
	Guidelines in SQO-Subset1
	Guidelines in SQO-Subset2

	Software Quality Objective Subsets (C++)
	SQO Subset 1 – Direct Impact on Selectivity
	SQO Subset 2 – Indirect Impact on Selectivity

	Coding Rule Subsets Checked Early in Analysis
	MISRA C:2004 and MISRA AC AGC Rules
	MISRA C:2012 Rules

	Create Custom Coding Rules
	User Interface (Desktop Products Only)
	Command Line

	Compute Code Complexity Metrics
	Impose Limits on Metrics (Desktop Products Only)
	Impose Limits on Metrics (Server and Access products)

	HIS Code Complexity Metrics
	Project
	File
	Function

	Configure Bug Finder Checkers
	Choose Specific Bug Finder Defect Checkers
	User Interface (Desktop Products Only)
	Command Line

	Modify Default Behavior of Bug Finder Checkers
	Defect Checkers
	Coding Standard Checkers

	Flag Deprecated or Unsafe Functions Using Bug Finder Checkers
	Identify Need for Extending Checker
	Extend Checker
	Checkers That Can Be Extended

	Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries
	Identify Need for Extending Checker
	Extend Checker
	Checkers That Can Be Extended

	Extend Bug Finder Checkers to Find Defects from Specific System Input Values
	Identify Need for Extending Checker
	Extend Checker
	Checkers That Can Be Extended

	Extend Concurrency Defect Checkers to Unsupported Multithreading Environments
	Identify Need for Extending Checker
	Extend Checker
	Checkers That Can Be Extended

	Extend Checkers for Initialization to Check Function Arguments Passed by Pointers
	Identify Need for Existing Checker
	Extend Checker
	Checkers That Can Be Extended

	Prepare Checkers Configuration for Polyspace Bug Finder Analysis
	Identify Checkers to Enable
	Create Checkers Configuration Files

	Short Names of Bug Finder Defect Checkers
	Bug Finder Defect Groups
	C++ Exceptions
	Concurrency
	Cryptography
	Data flow
	Dynamic Memory
	Good Practice
	Numerical
	Object Oriented
	Performance
	Programming
	Resource Management
	Static Memory
	Security
	Tainted data

	Sources of Tainting in a Polyspace Analysis
	Sources of Tainted Data
	Impact of Tainted Data Defects

	Polyspace Bug Finder Defects Checkers Enabled by Default
	Bug Finder Results Found in Fast Analysis Mode
	Polyspace Bug Finder Defects
	MISRA C:2004 and MISRA AC AGC Rules
	MISRA C:2012 Rules
	MISRA C++ 2008 Rules

	CWE Coding Standard and Polyspace Results
	CWE and Polyspace Bug Finder
	Find CWE IDs from Polyspace Results
	Mapping Between CWE Identifiers and Polyspace Results

	Mapping Between CWE-658 or 659 and Polyspace Results
	CWE-658: Weaknesses in Software Written in C
	CWE-659: Weaknesses in Software Written in C++

	Configure Comment Import from Previous Results
	Import Review Information from Previous Polyspace Analysis
	Automatic Import from Last Analysis
	Import from Another Analysis Result
	Import Algorithm
	View Imported Review Information That Does Not Apply

	Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results
	Mapping Multiple MISRA C: 2004 Annotations to the Same MISRA C: 2012 Result

	Troubleshooting in Polyspace Bug Finder Server
	License Error –4,0
	Issue
	Possible Cause: Another Polyspace Instance Running
	Possible Cause: Prior Polyspace Run in Simulink or MATLAB Coder

	Read Error Information When Polyspace Analysis Stops
	Contact Technical Support About Issues with Running Polyspace
	Provide System Information
	Provide Information About the Issue

	Compiler Not Supported for Project Creation from Build Systems
	Issue
	Cause
	Solution

	Slow Build Process When Polyspace Traces the Build
	Issue
	Cause
	Solution

	Check if Polyspace Supports Build Scripts
	Issue
	Possible Cause
	Solution

	Troubleshooting Project Creation from MinGW Build
	Issue
	Cause
	Solution

	Troubleshooting Project Creation from Visual Studio Build
	Polyspace Cannot Find the Server
	Message
	Possible Cause
	Solution

	Job Manager Cannot Write to Database
	Message
	Possible Cause
	Workaround

	Undefined Identifier Error
	Issue
	Possible Cause: Missing Files
	Possible Cause: Unrecognized Keyword
	Possible Cause: Declaration Embedded in #ifdef Statements
	Possible Cause: Project Created from Non-Debug Build

	Unknown Function Prototype Error
	Issue
	Cause
	Solution

	Error Related to #error Directive
	Issue
	Cause
	Solution

	Large Object Error
	Issue
	Cause
	Solution

	Errors Related to Generic Compiler
	Issue
	Cause
	Solution

	Errors Related to Keil or IAR Compiler
	Missing Identifiers

	Errors Related to Diab Compiler
	Issue
	Cause
	Solution

	Errors Related to Green Hills Compiler
	Issue
	Cause
	Solution

	Errors Related to TASKING Compiler
	Issue
	Cause
	Solution

	Errors from Conflicts with Polyspace Header Files
	Issue
	Cause
	Solution

	Errors from Using Namespace std Without Prefix
	Issue
	Cause
	Solution

	Errors from Assertion or Memory Allocation Functions
	Issue
	Cause
	Solution

	Errors from In-Class Initialization (C++)
	Errors from Double Declarations of Standard Template Library Functions (C++)
	Errors Related to GNU Compiler
	Issue
	Cause
	Solution

	Errors Related to Visual Compilers
	Import Folder
	pragma Pack
	C++/CLI

	Error or Slow Runs from Disk Defragmentation and Anti-virus Software
	Issue
	Possible Cause
	Solution

	SQLite I/O Error
	Issue
	Cause
	Solution

	Resolve -xml-annotations-description Errors
	Issue
	Possible Solutions

